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Reinforcement Learning Designer
Design, train, and simulate reinforcement learning agents

Description
The Reinforcement Learning Designer app lets you design, train, and simulate agents for existing
environments.

Using this app, you can:

• Import an existing environment from the MATLAB® workspace or create a predefined
environment.

• Automatically create or import an agent for your environment (DQN, DDPG, PPO, and TD3 agents
are supported).

• Train and simulate the agent against the environment.
• Analyze simulation results and refine your agent parameters.
• Export the final agent to the MATLAB workspace for further use and deployment.

Limitations

The following features are not supported in the Reinforcement Learning Designer app.

• Multi-agent systems
• Q, SARSA, PG, AC, and SAC agents
• Custom agents
• Agents relying on table or custom basis function representations

If your application requires any of these features then design, train, and simulate your agent at the
command line.

1 Apps
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Open the Reinforcement Learning Designer App
• MATLAB Toolstrip: On the Apps tab, under Machine Learning and Deep Learning, click the

app icon.
• MATLAB command prompt: Enter reinforcementLearningDesigner.

Examples
• “Create MATLAB Environments for Reinforcement Learning Designer”
• “Create Simulink Environments for Reinforcement Learning Designer”
• “Create Agents Using Reinforcement Learning Designer”
• “Design and Train Agent Using Reinforcement Learning Designer”

Programmatic Use
reinforcementLearningDesigner opens the Reinforcement Learning Designer app. You can
then import an environment and start the design process, or open a saved design session.

See Also
Apps
Deep Network Designer | Simulation Data Inspector

 Reinforcement Learning Designer
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Functions
rlDQNAgent | rlDDPGAgent | rlTD3Agent | rlPPOAgent | analyzeNetwork

Topics
“Create MATLAB Environments for Reinforcement Learning Designer”
“Create Simulink Environments for Reinforcement Learning Designer”
“Create Agents Using Reinforcement Learning Designer”
“Design and Train Agent Using Reinforcement Learning Designer”
“What Is Reinforcement Learning?”
“Reinforcement Learning Agents”
“Train Reinforcement Learning Agents”

Introduced in R2021a

1 Apps
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barrierPenalty
Logarithmic barrier penalty value for a point with respect to a bounded region

Syntax
p = barrierPenalty(x,xmin,xmax)
p = barrierPenalty( ___ ,maxValue,curvature)

Description
p = barrierPenalty(x,xmin,xmax) calculates the nonnegative (logarithmic barrier) penalty
vector p for the point x with respect to the region bounded by xmin and xmax. p has the same
dimension as x. This syntax uses the default values of 1 and 0.1 for the maxValue and curvature
parameters of the barrier function, respectively.

p = barrierPenalty( ___ ,maxValue,curvature) specifies both the maxValue and
curvature parameters of the barrier function. If maxValue is an empty matrix its default value is
used. Likewise if curvature is an empty matrix or it is omitted, its default value is used.

Examples

Calculate Logarithmic Barrier Penalty for a Point

This example shows how to use the logarithmic barrierPenalty function to calculate the barrier
penalty for a given point, with respect to a bounded region.

Calculate the penalty value for the point 0.1 within the interval [-2,2] using default values for the
maximum value and curvature parameters.

barrierPenalty(0.1,-2,2)

ans = 2.5031e-04

Calculate the penalty value for the point 4 outside the interval [-2,2].

barrierPenalty(4,-2,2)

ans = 1

Calculate the penalty value for the point 4 outside the interval [-2,2], using a maximum value
parameter of 5.

barrierPenalty(4,-2,2,5)

ans = 5

Calculate the penalty value for the point 0.1 inside the interval [-2,2], using a curvature parameter of
0.5.

barrierPenalty(0.1,-2,2,5,0.5)

2 Functions
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ans = 0.0013

Calculate the penalty value for the point [-2,0,4] with respect to the box defined by [0,1], [-1,1], and
[-2,2] along the x, y, and z dimensions, respectively, using the default value for maximum value and a
curvature parameter of 0.

barrierPenalty([-2 0 4],[0 -1 -2],[1 1 2],1,0)

ans = 3×1

     1
     0
     1

Visualize Penalty Values for an Interval

Create a vector of 1001 equidistant points distributed between -5 and 5.

x = -5:0.01:5;

Calculate penalties for all the points in the vector, using the default value for the maximum value
parameter and a value of 0.01 for the curvature parameter.

p = barrierPenalty(x,-2,2,1,0.01);

Plot the points and add grid, labels and title.

plot(x,p)
grid
xlabel("point position");
ylabel("penalty value");
title("Penalty values over an interval");

 barrierPenalty
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Input Arguments
x — Point for which the penalty is calculated
scalar | vector | matrix

Point for which the penalty is calculated, specified as a numeric scalar, vector or matrix.
Example: [0.5; 1.6]

xmin — Lower bounds
scalar | vector | matrix

Lower bounds for x, specified as a numeric scalar, vector or matrix. To use the same minimum value
for all elements in x, specify xmin as a scalar.
Example: -1

xmax — Upper bounds
scalar | vector | matrix

Upper bounds for x, specified as a numeric scalar, vector or matrix. To use the same maximum value
for all elements in x, specify xmax as a scalar.
Example: 2

maxValue — Maximum value parameter of the barrier function
1 (default) | nonnegative scalar

2 Functions
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Maximum value parameter of the barrier function, specified as a scalar.
Example: 2

curvature — Curvature parameter of the barrier function
0.1 (default) | nonnegative scalar

Curvature parameter of the barrier function, specified as a scalar.
Example: 0.2

Output Arguments
p — Penalty value
nonnegative vector

Penalty value, returned as a vector of nonnegative elements. Each element pi depends on the position
of xi with respect to the interval specified by xmini and xmaxi. The barrier penalty function returns
the value

p(x) = min pmax, C log 0.25 xmax− xmin
2 − log x− xmin xmax− xmin

when xmin < x < xmax, and maxValue otherwise. Here, C is the argument curvature, and pmax is the
argument maxValue. Note that for positive values of C the returned penalty value is always positive.
If C is zero, then the returned penalty is zero inside the interval defined by the bounds, and pmax
outside this interval. If x is multidimensional, then the calculation is applied independently on each
dimension. Penalty functions are typically used to generate negative rewards when constraints are
violated, such as in generateRewardFunction.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
generateRewardFunction | exteriorPenalty | hyperbolicPenalty

Topics
“Generate Reward Function from a Model Predictive Controller for a Servomotor”
“Generate Reward Function from a Model Verification Block for a Water Tank System”
“Define Reward Signals”

Introduced in R2021b
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bus2RLSpec
Create reinforcement learning data specifications for elements of a Simulink bus

Syntax
specs = bus2RLSpec(busName)
specs = bus2RLSpec(busName,Name,Value)

Description
specs = bus2RLSpec(busName) creates a set of reinforcement learning data specifications from
the Simulink® bus object specified by busName. One specification element is created for each leaf
element in the corresponding Simulink bus. Use these specifications to define actions and
observations for a Simulink reinforcement learning environment.

specs = bus2RLSpec(busName,Name,Value) specifies options for creating specifications using
one or more Name,Value pair arguments.

Examples

Create an observation specification object from a bus object

This example shows how to use the function bus2RLSpec to create an observation specification
object from a Simulink® bus object.

Create a bus object.

obsBus = Simulink.Bus();

Create three elements in the bus and specify their names.

obsBus.Elements(1) = Simulink.BusElement;
obsBus.Elements(1).Name = 'sin_theta';
obsBus.Elements(2) = Simulink.BusElement;
obsBus.Elements(2).Name = 'cos_theta';
obsBus.Elements(3) = Simulink.BusElement;
obsBus.Elements(3).Name = 'dtheta';

Create the observation specification objects using the Simulink bus object.

obsInfo = bus2RLSpec('obsBus');

You can then use obsInfo, together with the corresponding Simulink model, to create a
reinforcement learning environment. For an example, see “Train DDPG Agent to Swing Up and
Balance Pendulum with Bus Signal”.

2 Functions
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Create an action specification object from a bus object

This example shows how to call the function bus2RLSpec using name and value pairs to create an
action specification object from a Simulink® bus object.

Create a bus object.

actBus = Simulink.Bus();

Create one element in the bus and specify the name.

actBus.Elements(1) = Simulink.BusElement;
actBus.Elements(1).Name = 'actuator';

Create the observation specification objects using the Simulink bus object.

actInfo = bus2RLSpec('actBus','DiscreteElements',{'actuator',[-1 1]});

This specifies that the 'actuator' bus element can carry two possible values, -1, and 1.

You can then use actInfo, together with the corresponding Simulink model, to create a
reinforcement learning environment. Specifically the function that creates the environment uses
actInfo to determine the right bus output of the agent block.

For an example, see “Train DDPG Agent to Swing Up and Balance Pendulum with Bus Signal”.

Input Arguments
busName — Name of Simulink bus object
string | character vector

Name of Simulink bus object, specified as a string or character vector.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'DiscreteElements',{'force',[-5 0 5]} sets the 'force' bus element to be a
discrete data specification with three possible values, -5, 0, and 5

Model — Name of Simulink model
string | character vector

Name of the Simulink model, specified as the comma-separated pair consisting of 'Model' and a
string or character vector. Specify the model name when the bus object is defined in the model global
workspace (for example, in a data dictionary) instead of the MATLAB workspace.

BusElementNames — Names of bus leaf elements
string array

Names of bus leaf elements for which to create specifications, specified as the comma-separated pair
consisting of BusElementNames' and a string array. To create observation specifications for a subset
of the elements in a Simulink bus object, specify BusElementNames. If you do not specify
BusElementNames, a data specification is created for each leaf element in the bus.

 bus2RLSpec
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Note Do not specify BusElementNames when creating specifications for action signals. The RL
Agent block must output the full bus signal.

DiscreteElements — Finite values for discrete bus elements
cell array of name-value pairs

Finite values for discrete bus elements, specified as the comma-separated pair consisting of
'DiscreteElements' and a cell array of name-value pairs. Each name-value pair consists of a bus
leaf element name and an array of discrete values. The specified discrete values must be castable to
the data type of the specified action signal.

If you do not specify discrete values for an element specification, the element is continuous.
Example: 'ActionDiscretElements',{'force',[-10 0 10],'torque',[-5 0 5]} specifies
discrete values for the 'force' and 'torque' leaf elements of a bus action signal.

Output Arguments
specs — Data specifications
rlNumericSpec object | rlFiniteSetSpec object | array of data specification objects

Data specifications for reinforcement learning actions or observations, returned as one of the
following:

• rlNumericSpec object for a single continuous bus element
• rlFiniteSetSpec object for a single discrete bus element
• Array of data specification objects for multiple bus elements

By default, all data specifications for bus elements are rlNumericSpec objects. To create a discrete
specification for one or more bus elements, specify the element names using the DiscreteElements
name-value pair.

See Also
Blocks
RL Agent

Functions
rlSimulinkEnv | createIntegratedEnv | rlNumericSpec | rlFiniteSetSpec

Topics
“Create Simulink Reinforcement Learning Environments”

Introduced in R2019a

2 Functions
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rlCreateEnvTemplate
Create custom reinforcement learning environment template

Syntax
rlCreateEnvTemplate(className)

Description
rlCreateEnvTemplate(className) creates and opens a MATLAB script that contains a template
class representing a reinforcement learning environment. The template class contains an
implementation of a simple cart-pole balancing environment. To define your custom environment,
modify this template class. For more information, see “Create Custom MATLAB Environment from
Template”.

Examples

Create Custom Environment Template File

This example shows how to create and open a template file for a reinforcement learning environment.

For this example, name the class myEnvClass

rlCreateEnvTemplate("myEnvClass")

This function opens a MATLAB® script that contains the class. By default, this template class
describes a simple cart-pole environment.

Modify this template class, and save the file as myEnvClass.m

Input Arguments
className — Name of environment class
string | character vector

Name of environment class, specified as a string or character vector. This name defines the name of
the class and the name of the MATLAB script.

See Also
Topics
“Create MATLAB Reinforcement Learning Environments”

Introduced in R2019a
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createGridWorld
Create a two-dimensional grid world for reinforcement learning

Syntax
GW = createGridWorld(m,n)
GW = createGridWorld(m,n,moves)

Description
GW = createGridWorld(m,n) creates a grid world GW of size m-by-n with default actions of
['N';'S';'E';'W'].

GW = createGridWorld(m,n,moves) creates a grid world GW of size m-by-n with actions specified
by moves.

Examples

Create Grid World Environment

For this example, consider a 5-by-5 grid world with the following rules:

1 A 5-by-5 grid world bounded by borders, with 4 possible actions (North = 1, South = 2, East = 3,
West = 4).

2 The agent begins from cell [2,1] (second row, first column).
3 The agent receives reward +10 if it reaches the terminal state at cell [5,5] (blue).
4 The environment contains a special jump from cell [2,4] to cell [4,4] with +5 reward.
5 The agent is blocked by obstacles in cells [3,3], [3,4], [3,5] and [4,3] (black cells).
6 All other actions result in -1 reward.

2 Functions
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First, create a GridWorld object using the createGridWorld function.

GW = createGridWorld(5,5)

GW = 
  GridWorld with properties:

          GridSize: [5 5]
      CurrentState: "[1,1]"
            States: [25x1 string]
           Actions: [4x1 string]
                 T: [25x25x4 double]
                 R: [25x25x4 double]
    ObstacleStates: [0x1 string]
    TerminalStates: [0x1 string]

Now, set the initial, terminal and obstacle states.

GW.CurrentState = '[2,1]';
GW.TerminalStates = '[5,5]';
GW.ObstacleStates = ["[3,3]";"[3,4]";"[3,5]";"[4,3]"];

Update the state transition matrix for the obstacle states and set the jump rule over the obstacle
states.

updateStateTranstionForObstacles(GW)
GW.T(state2idx(GW,"[2,4]"),:,:) = 0;
GW.T(state2idx(GW,"[2,4]"),state2idx(GW,"[4,4]"),:) = 1;

Next, define the rewards in the reward transition matrix.

nS = numel(GW.States);
nA = numel(GW.Actions);
GW.R = -1*ones(nS,nS,nA);

 createGridWorld
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GW.R(state2idx(GW,"[2,4]"),state2idx(GW,"[4,4]"),:) = 5;
GW.R(:,state2idx(GW,GW.TerminalStates),:) = 10;

Now, use rlMDPEnv to create a grid world environment using the GridWorld object GW.

env = rlMDPEnv(GW)

env = 
  rlMDPEnv with properties:

       Model: [1x1 rl.env.GridWorld]
    ResetFcn: []

You can visualize the grid world environment using the plot function.

plot(env)

Input Arguments
m — Number of rows of the grid world
scalar

Number of rows of the grid world, specified as a scalar.

n — Number of columns of the grid world
scalar

2 Functions
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Number of columns of the grid world, specified as a scalar.

moves — Action names
'Standard' (default) | 'Kings'

Action names, specified as either 'Standard' or 'Kings'. When moves is set to

• 'Standard', the actions are ['N';'S';'E';'W'].
• 'Kings', the actions are ['N';'S';'E';'W';'NE';'NW';'SE';'SW'].

Output Arguments
GW — Two-dimensional grid world
GridWorld object

Two-dimensional grid world, returned as a GridWorld object with properties listed below. For more
information, see “Create Custom Grid World Environments”.

GridSize — Size of the grid world
[m,n] vector

Size of the grid world, specified as a [m,n] vector.

CurrentState — Name of the current state
string

Name of the current state, specified as a string.

States — State names
string vector

State names, specified as a string vector of length m*n.

Actions — Action names
string vector

Action names, specified as a string vector. The length of the Actions vector is determined by the
moves argument.

Actions is a string vector of length:

• Four, if moves is specified as 'Standard'.
• Eight, moves is specified as 'Kings'.

T — State transition matrix
3D array

State transition matrix, specified as a 3-D array, which determines the possible movements of the
agent in an environment. State transition matrix T is a probability matrix that indicates how likely the
agent will move from the current state s to any possible next state s' by performing action a. T is
given by,

T s, s′, a   =  probability s′ s, a .

T is:

 createGridWorld
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• A K-by-K-by-4 array, if moves is specified as 'Standard'. Here, K = m*n.
• A K-by-K-by-8 array, if moves is specified as 'Kings'.

R — Reward transition matrix
3D array

Reward transition matrix, specified as a 3-D array, determines how much reward the agent receives
after performing an action in the environment. R has the same shape and size as state transition
matrix T. Reward transition matrix R is given by,

r  =  R s, s′, a .

R is:

• A K-by-K-by-4 array, if moves is specified as 'Standard'. Here, K = m*n.
• A K-by-K-by-8 array, if moves is specified as 'Kings'.

ObstacleStates — State names that cannot be reached in the grid world
string vector

State names that cannot be reached in the grid world, specified as a string vector.

TerminalStates — Terminal state names in the grid world
string vector

Terminal state names in the grid world, specified as a string vector.

See Also
rlMDPEnv | rlPredefinedEnv

Topics
“Create Custom Grid World Environments”
“Train Reinforcement Learning Agent in Basic Grid World”

Introduced in R2019a
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createIntegratedEnv
Create Simulink model for reinforcement learning, using reference model as environment

Syntax
env = createIntegratedEnv(refModel,newModel)
[env,agentBlock,obsInfo,actInfo] = createIntegratedEnv( ___ )

[ ___ ] = createIntegratedEnv( ___ ,Name,Value)

Description
env = createIntegratedEnv(refModel,newModel) creates a Simulink model with the name
specified by newModel and returns a reinforcement learning environment object, env, for this model.
The new model contains an RL Agent block and uses the reference model refModel as a
reinforcement learning environment for training the agent specified by this block.

[env,agentBlock,obsInfo,actInfo] = createIntegratedEnv( ___ ) returns the block path
to the RL Agent block in the new model and the observation and action data specifications for the
reference model, obsInfo and actInfo, respectively.

[ ___ ] = createIntegratedEnv( ___ ,Name,Value) creates a model and environment interface
using port, observation, and action information specified using one or more Name,Value pair
arguments.

Examples

Create Environment from Simulink Model

This example shows how to use createIntegratedEnv to create an environment object starting
from a Simulink model that implements the system with which the agent. Such a system is often
referred to as plant, open-loop system, or reference system, while the whole (integrated) system
including the agent is often referred to as the closed-loop system.

For this example, use the flying robot model described in “Train DDPG Agent to Control Flying
Robot” as the reference (open-loop) system.

Open the flying robot model.

open_system('rlFlyingRobotEnv')

Initialize the state variables and sample time.

% initial model state variables
theta0 = 0;
x0 = -15;
y0 = 0;

% sample time
Ts = 0.4;

 createIntegratedEnv
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Create the Simulink model IntegratedEnv containing the flying robot model connected in a closed
loop to the agent block. The function also returns the reinforcement learning environment object env
to be used for training.

env = createIntegratedEnv('rlFlyingRobotEnv','IntegratedEnv')

env = 
SimulinkEnvWithAgent with properties:

           Model : IntegratedEnv
      AgentBlock : IntegratedEnv/RL Agent
        ResetFcn : []
  UseFastRestart : on

The function can also return the block path to the RL Agent block in the new integrated model, as
well as the observation and action specifications for the reference model.

[~,agentBlk,observationInfo,actionInfo] = createIntegratedEnv('rlFlyingRobotEnv','IntegratedEnv')

agentBlk = 
'IntegratedEnv/RL Agent'

observationInfo = 
  rlNumericSpec with properties:

     LowerLimit: -Inf
     UpperLimit: Inf
           Name: "observation"
    Description: [0x0 string]
      Dimension: [7 1]
       DataType: "double"

actionInfo = 
  rlNumericSpec with properties:

     LowerLimit: -Inf
     UpperLimit: Inf
           Name: "action"
    Description: [0x0 string]
      Dimension: [2 1]
       DataType: "double"

Returning the block path and specifications is useful in cases in which you need to modify
descriptions, limits, or names in observationInfo and actionInfo. After modifying the
specifications, you can then create an environment from the integrated model IntegratedEnv using
the rlSimulinkEnv function.

Create Integrated Environment with Specified Port Names

This example shows how to call createIntegratedEnv using name-value pairs to specify port
names.

2 Functions
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The first argument of createIntegratedEnv is the name of the reference Simulink model that
contains the system with which the agent must interact. Such a system is often referred to as plant,
or open-loop system. For this example, the reference system is the model of a water tank.

Open the open-loop water tank model.

open_system('rlWatertankOpenloop')

Set the sample time of the discrete integrator block used to generate the observation, so the
simulation can run.

Ts = 1;

The input port is called u (instead of action), and the first and third output ports are called y and
stop (instead of observation and isdone). Specify the port names using name-value pairs.

env = createIntegratedEnv('rlWatertankOpenloop','IntegratedWatertank',...
    'ActionPortName','u','ObservationPortName','y','IsDonePortName','stop')

env = 
SimulinkEnvWithAgent with properties:

           Model : IntegratedWatertank
      AgentBlock : IntegratedWatertank/RL Agent
        ResetFcn : []
  UseFastRestart : on

The new model IntegratedWatertank contains the reference model connected in a closed-loop
with the agent block. The function also returns the reinforcement learning environment object to be
used for training.

Input Arguments
refModel — Reference model name
string | character vector

Reference model name, specified as a string or character vector. This is the Simulink model
implementing the system that the agent needs to interact with. Such a system is often referred to as
plant, open loop system or reference system, while the whole (integrated) system including the agent
is often referred to as the closed loop system. The new Simulink model uses this reference model as
the dynamic model of the environment for reinforcement learning.

newModel — New model name
string | character vector

New model name, specified as a string or character vector. createIntegratedEnv creates a
Simulink model with this name, but does not save the model.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

 createIntegratedEnv
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Example: 'IsDonePortName',"stopSim" sets the stopSim port of the reference model as the
source of the isdone signal.

ObservationPortName — Reference model observation output port name
"observation" (default) | string | character vector

Reference model observation output port name, specified as the comma-separated pair consisting of
'ObservationPortName' and a string or character vector. Specify ObservationPortName when
the name of the observation output port of the reference model is not "observation".

ActionPortName — Reference model action input port name
"action" (default) | string | character vector

Reference model action input port name, specified as the comma-separated pair consisting of
'ActionPortName' and a string or character vector. Specify ActionPortName when the name of
the action input port of the reference model is not "action".

RewardPortName — Reference model reward output port name
"reward" (default) | string | character vector

Reference model reward output port name, specified as the comma-separated pair consisting of
'RewardPortName' and a string or character vector. Specify RewardPortName when the name of
the reward output port of the reference model is not "reward".

IsDonePortName — Reference model done flag output port name
"isdone" (default) | string | character vector

Reference model done flag output port name, specified as the comma-separated pair consisting of
'IsDonePortName' and a string or character vector. Specify IsDonePortName when the name of
the done flag output port of the reference model is not "isdone".

ObservationBusElementNames — Names of observation bus leaf elements
string array

Names of observation bus leaf elements for which to create specifications, specified as a string array.
To create observation specifications for a subset of the elements in a Simulink bus object, specify
BusElementNames. If you do not specify BusElementNames, a data specification is created for each
leaf element in the bus.

ObservationBusElementNames is applicable only when the observation output port is a bus signal.
Example: 'ObservationBusElementNames',["sin" "cos"] creates specifications for the
observation bus elements with the names "sin" and "cos".

ObservationDiscreteElements — Finite values for observation specifications
cell array of name-value pairs

Finite values for discrete observation specification elements, specified as the comma-separated pair
consisting of 'ObservationDiscreteElements' and a cell array of name-value pairs. Each name-
value pair consists of an element name and an array of discrete values.

If the observation output port of the reference model is:

• A bus signal, specify the name of one of the leaf elements of the bus specified in by
ObservationBusElementNames

2 Functions
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• Nonbus signal, specify the name of the observation port, as specified by ObservationPortName

The specified discrete values must be castable to the data type of the specified observation signal.

If you do not specify discrete values for an observation specification element, the element is
continuous.
Example: 'ObservationDiscretElements',{'observation',[-1 0 1]} specifies discrete
values for a nonbus observation signal with default port name observation.
Example: 'ObservationDiscretElements',{'gear',[-1 0 1 2],'direction',[1 2 3 4]}
specifies discrete values for the 'gear' and 'direction' leaf elements of a bus action signal.

ActionDiscreteElements — Finite values for action specifications
cell array of name-value pairs

Finite values for discrete action specification elements, specified as the comma-separated pair
consisting of 'ActionDiscreteElements' and a cell array of name-value pairs. Each name-value
pair consists of an element name and an array of discrete values.

If the action input port of the reference model is:

• A bus signal, specify the name of a leaf element of the bus
• Nonbus signal, specify the name of the action port, as specified by ActionPortName

The specified discrete values must be castable to the data type of the specified action signal.

If you do not specify discrete values for an action specification element, the element is continuous.
Example: 'ActionDiscretElements',{'action',[-1 0 1]} specifies discrete values for a
nonbus action signal with default port name 'action'.
Example: 'ActionDiscretElements',{'force',[-10 0 10],'torque',[-5 0 5]} specifies
discrete values for the 'force' and 'torque' leaf elements of a bus action signal.

Output Arguments
env — Reinforcement learning environment
SimulinkEnvWithAgent object

Reinforcement learning environment interface, returned as an SimulinkEnvWithAgent object.

agentBlock — Block path to the agent block
character vector

Block path to the agent block in the new model, returned as a character vector. To train an agent in
the new Simulink model, you must create an agent and specify the agent name in the RL Agent block
indicated by agentBlock.

For more information on creating agents, see “Reinforcement Learning Agents”.

obsInfo — Observation data specifications
rlNumericSpec object | rlFiniteSetSpec object | array of data specification objects

Observation data specifications, returned as one of the following:
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• rlNumericSpec object for a single continuous observation specification
• rlFiniteSetSpec object for a single discrete observation specification
• Array of data specification objects for multiple specifications

actInfo — Action data specifications
rlNumericSpec object | rlFiniteSetSpec object | array of data specification objects

Action data specifications, returned as one of the following:

• rlNumericSpec object for a single continuous action specification
• rlFiniteSetSpec object for a single discrete action specification
• Array of data specification objects for multiple action specifications

See Also
Blocks
RL Agent

Functions
rlSimulinkEnv | bus2RLSpec | rlNumericSpec | rlFiniteSetSpec

Topics
“Create Simulink Reinforcement Learning Environments”

Introduced in R2019a
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createMDP
Create Markov decision process model

Syntax
MDP = createMDP(states,actions)

Description
MDP = createMDP(states,actions) creates a Markov decision process model with the specified
states and actions.

Examples

Create MDP Model

Create an MDP model with eight states and two possible actions.

MDP = createMDP(8,["up";"down"]);

Specify the state transitions and their associated rewards.

% State 1 Transition and Reward
MDP.T(1,2,1) = 1;
MDP.R(1,2,1) = 3;
MDP.T(1,3,2) = 1;
MDP.R(1,3,2) = 1;

% State 2 Transition and Reward
MDP.T(2,4,1) = 1;
MDP.R(2,4,1) = 2;
MDP.T(2,5,2) = 1;
MDP.R(2,5,2) = 1;

% State 3 Transition and Reward
MDP.T(3,5,1) = 1;
MDP.R(3,5,1) = 2;
MDP.T(3,6,2) = 1;
MDP.R(3,6,2) = 4;

% State 4 Transition and Reward
MDP.T(4,7,1) = 1;
MDP.R(4,7,1) = 3;
MDP.T(4,8,2) = 1;
MDP.R(4,8,2) = 2;

% State 5 Transition and Reward
MDP.T(5,7,1) = 1;
MDP.R(5,7,1) = 1;
MDP.T(5,8,2) = 1;
MDP.R(5,8,2) = 9;
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% State 6 Transition and Reward
MDP.T(6,7,1) = 1;
MDP.R(6,7,1) = 5;
MDP.T(6,8,2) = 1;
MDP.R(6,8,2) = 1;

% State 7 Transition and Reward
MDP.T(7,7,1) = 1;
MDP.R(7,7,1) = 0;
MDP.T(7,7,2) = 1;
MDP.R(7,7,2) = 0;

% State 8 Transition and Reward
MDP.T(8,8,1) = 1;
MDP.R(8,8,1) = 0;
MDP.T(8,8,2) = 1;
MDP.R(8,8,2) = 0;

Specify the terminal states of the model.

MDP.TerminalStates = ["s7";"s8"];

Input Arguments
states — Model states
positive integer | string vector

Model states, specified as one of the following:

• Positive integer — Specify the number of model states. In this case, each state has a default name,
such as "s1" for the first state.

• String vector — Specify the state names. In this case, the total number of states is equal to the
length of the vector.

actions — Model actions
positive integer | string vector

Model actions, specified as one of the following:

• Positive integer — Specify the number of model actions. In this case, each action has a default
name, such as "a1" for the first action.

• String vector — Specify the action names. In this case, the total number of actions is equal to the
length of the vector.

Output Arguments
MDP — MDP model
GenericMDP object

MDP model, returned as a GenericMDP object with the following properties.

CurrentState — Name of the current state
string
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Name of the current state, specified as a string.

States — State names
string vector

State names, specified as a string vector with length equal to the number of states.

Actions — Action names
string vector

Action names, specified as a string vector with length equal to the number of actions.

T — State transition matrix
3D array

State transition matrix, specified as a 3-D array, which determines the possible movements of the
agent in an environment. State transition matrix T is a probability matrix that indicates how likely the
agent will move from the current state s to any possible next state s' by performing action a. T is an
S-by-S-by-A array, where S is the number of states and A is the number of actions. It is given by:

T s, s′, a   =  probability s′ s, a .

The sum of the transition probabilities out from a nonterminal state s following a given action must
sum up to one. Therefore, all stochastic transitions out of a given state must be specified at the same
time.

For example, to indicate that in state 1 following action 4 there is an equal probability of moving to
states 2 or 3, use the following:

MDP.T(1,[2 3],4) = [0.5 0.5];

You can also specify that, following an action, there is some probability of remaining in the same
state. For example:

MDP.T(1,[1 2 3 4],1) = [0.25 0.25 0.25 0.25];

R — Reward transition matrix
3D array

Reward transition matrix, specified as a 3-D array, which determines how much reward the agent
receives after performing an action in the environment. R has the same shape and size as state
transition matrix T. The reward for moving from state s to state s' by performing action a is given
by:

r  =  R s, s′, a .

TerminalStates — Terminal state names in the grid world
string vector

Terminal state names in the grid world, specified as a string vector of state names.

See Also
rlMDPEnv | createGridWorld

Topics
“Train Reinforcement Learning Agent in MDP Environment”
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Introduced in R2019a
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exteriorPenalty
Exterior penalty value for a point with respect to a bounded region

Syntax
p = exteriorPenalty(x,xmin,xmax,method)

Description
p = exteriorPenalty(x,xmin,xmax,method) uses the specified method to calculate the
nonnegative (exterior) penalty vector p for the point x with respect to the region bounded by xmin
and xmax. p has the same dimension as x.

Examples

Calculate Exterior Penalty for Point

This example shows how to use the exteriorPenalty function to calculate the exterior penalty for
a given point, with respect to a bounded region.

Calculate the penalty value for the point 0.1 within the interval [-2,2], using the step method.

exteriorPenalty(0.1,-2,2,'step')

ans = 0

Calculate the penalty value for the point 4 outside the interval [-2,2], using the step method.

exteriorPenalty(4,-2,2,'step')

ans = 1

Calculate the penalty value for the point 4 outside the interval [-2,2], using the quadratic method.

exteriorPenalty(4,-2,2,'quadratic')

ans = 4

Calculate the penalty value for the point [-2,0,4] with respect to the box defined by the intervals
[0,1], [-1,1], and [-2,2] along the x, y, and z dimensions, respectively, using the quadratic method.

exteriorPenalty([-2 0 4],[0 -1 -2],[1 1 2],'quadratic')

ans = 3×1

     4
     0
     4
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Visualize Penalty Values for an Interval

Create a vector of 1001 equidistant points distributed between -5 and 5.

x = -5:0.01:5;

Calculate penalties for all the points in the vector, using the quadratic method.

p = exteriorPenalty(x,-2,2,'quadratic');

Plot the points and add grid, labels, and title.

plot(x,p)
grid
xlabel("point position");
ylabel("penalty value");
title("Penalty values over an interval");

Input Arguments
x — Point for which penalty is calculated
scalar | vector | matrix

Point for which the exterior penalty is calculated, specified as a numeric scalar, vector, or matrix.
Example: [-0.1, 1.3]
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xmin — Lower bounds
scalar | vector | matrix

Lower bounds for x, specified as a numeric scalar, vector, or matrix. To use the same minimum value
for all elements in x, specify xmin as a scalar.
Example: -2

xmax — Upper bounds
scalar | vector | matrix

Upper bounds for x, specified as a numeric scalar, vector, or matrix. To use the same maximum value
for all elements in x, specify xmax as a scalar.
Example: [5 10]

method — Function used to calculate the penalty
'step' | 'quadratic'

Function used to calculate the penalty, specified either as 'step' or 'quadratic'. You can also use
strings instead of character vectors.
Example: "quadratic"

Output Arguments
p — Penalty value
nonnegative vector

Penalty value, returned as a vector of nonnegative elements. With either of the two methods, each
element pi is zero if the corresponding xi is within the region specified by xmini and xmaxi, and it is
positive otherwise. Penalty functions are typically used to generate negative rewards when
constraints are violated, such as in generateRewardFunction.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
generateRewardFunction | hyperbolicPenalty | barrierPenalty

Topics
“Generate Reward Function from a Model Predictive Controller for a Servomotor”
“Define Reward Signals”

Introduced in R2021b
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generatePolicyFunction
Package: rl.agent

Create function that evaluates trained policy of reinforcement learning agent

Syntax
generatePolicyFunction(agent)
generatePolicyFunction(agent,Name,Value)

Description
generatePolicyFunction(agent) creates a function that evaluates the learned policy of the
specified agent using the default function, policy, and data file names. After generating the policy
evaluation function, you can:

• Generate code for the function using MATLAB Coder™ or GPU Coder™. For more information, see
“Deploy Trained Reinforcement Learning Policies”.

• Simulate the trained agent in Simulink using a MATLAB Function block.

generatePolicyFunction(agent,Name,Value) specifies the function, policy, and data file names
using one or more name-value pair arguments.

Examples

Create Policy Evaluation Function for PG Agent

This example shows how to create a policy evaluation function for a PG Agent.

First, create and train a reinforcement learning agent. For this example, load the PG agent trained in
“Train PG Agent to Balance Cart-Pole System”:

load('MATLABCartpolePG.mat','agent')

Then, create a policy evaluation function for this agent using default names:

generatePolicyFunction(agent);

This command creates the evaluatePolicy.m file, which contains the policy function, and the
agentData.mat file, which contains the trained deep neural network actor.

View the generated function.

type evaluatePolicy.m

function action1 = evaluatePolicy(observation1)
%#codegen

% Reinforcement Learning Toolbox
% Generated on: 01-Sep-2021 18:11:43
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actionSet = [-10 10];
% Select action from sampled probabilities
probabilities = localEvaluate(observation1);
% Normalize the probabilities
p = probabilities(:)'/sum(probabilities);
% Determine which action to take
edges = min([0 cumsum(p)],1);
edges(end) = 1;
[~,actionIndex] = histc(rand(1,1),edges); %#ok<HISTC>
action1 = actionSet(actionIndex);
end
%% Local Functions
function probabilities = localEvaluate(observation1)
persistent policy
if isempty(policy)
    policy = coder.loadDeepLearningNetwork('agentData.mat','policy');
end
observation1 = observation1(:)';
probabilities = predict(policy, observation1);
end

For a given observation, the policy function evaluates a probability for each potential action using the
actor network. Then, the policy function randomly selects an action based on these probabilities.

Evaluate the policy for a random observation.

evaluatePolicy(rand(4,1))

ans = 10

You can now generate code for this policy function using MATLAB® Coder™. For more information,
see “Deploy Trained Reinforcement Learning Policies”.

Create Policy Evaluation Function for Q-Learning Agent

This example shows how to create a policy evaluation function for a Q-Learning Agent.

For this example, load the Q-learning agent trained in “Train Reinforcement Learning Agent in Basic
Grid World”

load('basicGWQAgent.mat','qAgent')

Create a policy evaluation function for this agent and specify the name of the agent data file.

generatePolicyFunction(qAgent,'MATFileName',"policyFile.mat")

This command creates the evaluatePolicy.m file, which contains the policy function, and the
policyFile.mat file, which contains the trained Q table value function.

View the generated function.

type evaluatePolicy.m

function action1 = evaluatePolicy(observation1)
%#codegen
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% Reinforcement Learning Toolbox
% Generated on: 01-Sep-2021 18:11:47

actionSet = [1;2;3;4];
numActions = numel(actionSet);
q = zeros(1,numActions);
for i = 1:numActions
    q(i) = localEvaluate(observation1,actionSet(i));
end
[~,actionIndex] = max(q);
action1 = actionSet(actionIndex);
end
%% Local Functions
function q = localEvaluate(observation1,action)
persistent policy
if isempty(policy)
    s = coder.load('policyFile.mat','policy');
    policy = s.policy;
end
actionSet = [1;2;3;4];
observationSet = [1;2;3;4;5;6;7;8;9;10;11;12;13;14;15;16;17;18;19;20;21;22;23;24;25];
actionIndex = rl.codegen.getElementIndex(actionSet,action);
observationIndex = rl.codegen.getElementIndex(observationSet,observation1);
q = policy(observationIndex,actionIndex);
end

For a given observation, the policy function looks up the value function for each potential action using
the Q table. Then, the policy function selects the action for which the value function is greatest.

Evaluate the policy for a random observation.

evaluatePolicy(randi(25))

ans = 1

You can now generate code for this policy function using MATLAB® Coder™. For more information,
see “Deploy Trained Reinforcement Learning Policies”.

Input Arguments
agent — Trained reinforcement learning agent
reinforcement learning agent object

Trained reinforcement learning agent, specified as one of the following:

• rlQAgent object
• rlSARSAAgent object
• rlDDPGAgent object
• rlTD3Agent object
• rlACAgent object
• rlPGAgent object that estimates a baseline value function using a critic

To train your agent, use the train function.
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Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'FunctionName',"computeAction"

FunctionName — Name of the generated function
'evaluatePolicy' (default) | string | character vector

Name of the generated function, specified as the name-value pair consisting of 'FunctionName' and
a string or character vector.

PolicyName — Name of the policy variable within the generated function
'policy' (default) | string | character vector

Name of the policy variable within the generated function, specified as the name-value pair consisting
of 'PolicyName' and a string or character vector.

MATFileName — Name of agent data file
'agentData' (default) | string | character vector

Name of the agent data file, specified as the name-value pair consisting of 'MATFileName' and a
string or character vector.

See Also
train | dlnetwork

Topics
“Train Reinforcement Learning Agents”
“Reinforcement Learning Agents”
“Create Policy and Value Function Representations”
“Deploy Trained Reinforcement Learning Policies”

Introduced in R2019a
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generateRewardFunction
Generate a reward function from control specifications to train a reinforcement learning agent

Syntax
generateRewardFunction(mpcobj)
generateRewardFunction(blks)
generateRewardFunction( ___ ,'FunctionName',myFcnName)

Description
generateRewardFunction(mpcobj) generates a MATLAB reward function based on the cost and
constraints defined in the linear or nonlinear MPC object mpcobj. The generated reward function is
displayed in a new editor window and you can use it as a starting point for reward design. You can
tune the weights, use a different penalty function, and then use the resulting reward function within
an environment to train an agent.

This syntax requires Model Predictive Control Toolbox™ software.

generateRewardFunction(blks) generates a MATLAB reward function based on performance
constraints defined in the model verification blocks specified in the array of block paths blks.

This syntax requires Simulink Design Optimization™ software.

generateRewardFunction( ___ ,'FunctionName',myFcnName) specifies the name of the
generated reward function, and saves it into a file with the same name. It also overwrites any
preexisting file with the same name in the current directory. Provide this name after either of the
previous input arguments.

Examples

Generate a Reward Function from MPC object

This example shows how to generate a reinforcement learning reward function from an MPC object.

Define Plant and Create MPC Controller

Create a random plant using the rss function and set the feedthrough matrix to zero.

plant = rss(4,3,2);
plant.d = 0;

Specify which of the plant signals are manipulated variables, measured disturbances, measured
outputs and unmeasured outputs.

plant = setmpcsignals(plant,'MV',1,'MD',2,'MO',[1 2],'UO',3);

Create an MPC controller with a sample time of 0.1 and prediction and control horizons of 10 and 3
steps, respectively.
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mpcobj = mpc(plant,0.1,10,3);

-->The "Weights.ManipulatedVariables" property of "mpc" object is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property of "mpc" object is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property of "mpc" object is empty. Assuming default 1.00000.
   for output(s) y1 and zero weight for output(s) y2 y3 

Set limits and a scale factor for the manipulated variable.

mpcobj.ManipulatedVariables.Min = -2;
mpcobj.ManipulatedVariables.Max = 2;
mpcobj.ManipulatedVariables.ScaleFactor = 4;

Set weights for the quadratic cost function.

mpcobj.Weights.OutputVariables = [10 1 0.1];
mpcobj.Weights.ManipulatedVariablesRate = 0.2;

Generate the Reward Function

Generate the reward function code from specifications in the mpc object using
generateRewardFunction. The code is displayed in the MATLAB Editor.

generateRewardFunction(mpcobj)

For this example, the is saved in the MATLAB function file myMpcRewardFcn.m. Display the
generated reward function.

type myMpcRewardFcn.m

function reward = myMpcRewardFcn(y,refy,mv,refmv,lastmv)
% MYMPCREWARDFCN generates rewards from MPC specifications.
%
% Description of input arguments:
%
% y : Output variable from plant at step k+1
% refy : Reference output variable at step k+1
% mv : Manipulated variable at step k
% refmv : Reference manipulated variable at step k
% lastmv : Manipulated variable at step k-1
%
% Limitations (MPC and NLMPC):
%     - Reward computed based on first step in prediction horizon.
%       Therefore, signal previewing and control horizon settings are ignored.
%     - Online cost and constraint update is not supported.
%     - Custom cost and constraint specifications are not considered.
%     - Time varying cost weights and constraints are not supported.
%     - Mixed constraint specifications are not considered (for the MPC case).

% Reinforcement Learning Toolbox
% 27-May-2021 14:47:29

%#codegen

%% Specifications from MPC object
% Standard linear bounds as specified in 'States', 'OutputVariables', and
% 'ManipulatedVariables' properties
ymin = [-Inf -Inf -Inf];
ymax = [Inf Inf Inf];
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mvmin = -2;
mvmax = 2;
mvratemin = -Inf;
mvratemax = Inf;

% Scale factors as specified in 'States', 'OutputVariables', and
% 'ManipulatedVariables' properties
Sy  = [1 1 1];
Smv = 4;

% Standard cost weights as specified in 'Weights' property
Qy      = [10 1 0.1];
Qmv     = 0;
Qmvrate = 0.2;

%% Compute cost
dy      = (refy(:)-y(:)) ./ Sy';
dmv     = (refmv(:)-mv(:)) ./ Smv';
dmvrate = (mv(:)-lastmv(:)) ./ Smv';
Jy      = dy'      * diag(Qy.^2)      * dy;
Jmv     = dmv'     * diag(Qmv.^2)     * dmv;
Jmvrate = dmvrate' * diag(Qmvrate.^2) * dmvrate;
Cost    = Jy + Jmv + Jmvrate;

%% Penalty function weight (specify nonnegative)
Wy = [1 1 1];
Wmv = 10;
Wmvrate = 10;

%% Compute penalty
% Penalty is computed for violation of linear bound constraints.
%
% To compute exterior bound penalty, use the exteriorPenalty function and
% specify the penalty method as 'step' or 'quadratic'.
%
% Alternaltively, use the hyperbolicPenalty or barrierPenalty function for
% computing hyperbolic and barrier penalties.
%
% For more information, see help for these functions.
%
% Set Pmv value to 0 if the RL agent action specification has
% appropriate 'LowerLimit' and 'UpperLimit' values.
Py      = Wy      * exteriorPenalty(y,ymin,ymax,'step');
Pmv     = Wmv     * exteriorPenalty(mv,mvmin,mvmax,'step');
Pmvrate = Wmvrate * exteriorPenalty(mv-lastmv,mvratemin,mvratemax,'step');
Penalty = Py + Pmv + Pmvrate;

%% Compute reward
reward = -(Cost + Penalty);
end

The calculated reward depends only on the current values of the plant input and output signals and
their reference values, and it is composed of two parts.

The first is a negative cost that depends on the squared difference between desired and current plant
inputs and outputs. This part uses the cost function weights specified in the MPC object. The second
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part is a penalty that acts as a negative reward whenever the current plant signals violate the
constraints.

The generated reward function is a starting point for reward design. You can tune the weights or use
a different penalty function to define a more appropriate reward for your reinforcement learning
agent.

Generate Reward Function from Verification Block

This example shows how to generate a reinforcement learning reward function from a Simulink
Design Optimization model verification block.

For this example, open the Simulink model LevelCheckBlock.slx, which contains a Check Step
Response Characteristics block named Level Check.

open_system('LevelCheckBlock')
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Generate the reward function code from specifications in the Level Check block, using
generateRewardFunction. The code is displayed in the MATLAB Editor.

generateRewardFunction('LevelCheckBlock/Level Check')

For this example, the code is saved in the MATLAB function file myBlockRewardFcn.m.

Display the generated reward function.

type myBlockRewardFcn.m

function reward = myBlockRewardFcn(x,t)
% MYBLOCKREWARDFCN generates rewards from Simulink block specifications.
%
% x : Input of LevelCheckBlock/Level Check
% t : Simulation time (s)

% Reinforcement Learning Toolbox
% 27-May-2021 16:45:27

%#codegen
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%% Specifications from LevelCheckBlock/Level Check
Block1_InitialValue = 1;
Block1_FinalValue = 2;
Block1_StepTime = 0;
Block1_StepRange = Block1_FinalValue - Block1_InitialValue;
Block1_MinRise = Block1_InitialValue + Block1_StepRange * 80/100;
Block1_MaxSettling = Block1_InitialValue + Block1_StepRange * (1+2/100);
Block1_MinSettling = Block1_InitialValue + Block1_StepRange * (1-2/100);
Block1_MaxOvershoot = Block1_InitialValue + Block1_StepRange * (1+10/100);
Block1_MinUndershoot = Block1_InitialValue - Block1_StepRange * 5/100;

if t >= Block1_StepTime
    if Block1_InitialValue <= Block1_FinalValue
        Block1_UpperBoundTimes = [0,5; 5,max(5+1,t+1)];
        Block1_UpperBoundAmplitudes = [Block1_MaxOvershoot,Block1_MaxOvershoot; Block1_MaxSettling,Block1_MaxSettling];
        Block1_LowerBoundTimes = [0,2; 2,5; 5,max(5+1,t+1)];
        Block1_LowerBoundAmplitudes = [Block1_MinUndershoot,Block1_MinUndershoot; Block1_MinRise,Block1_MinRise; Block1_MinSettling,Block1_MinSettling];
    else
        Block1_UpperBoundTimes = [0,2; 2,5; 5,max(5+1,t+1)];
        Block1_UpperBoundAmplitudes = [Block1_MinUndershoot,Block1_MinUndershoot; Block1_MinRise,Block1_MinRise; Block1_MinSettling,Block1_MinSettling];
        Block1_LowerBoundTimes = [0,5; 5,max(5+1,t+1)];
        Block1_LowerBoundAmplitudes = [Block1_MaxOvershoot,Block1_MaxOvershoot; Block1_MaxSettling,Block1_MaxSettling];
    end

    Block1_xmax = zeros(1,size(Block1_UpperBoundTimes,1));
    for idx = 1:numel(Block1_xmax)
        tseg = Block1_UpperBoundTimes(idx,:);
        xseg = Block1_UpperBoundAmplitudes(idx,:);
        Block1_xmax(idx) = interp1(tseg,xseg,t,'linear',NaN);
    end
    if all(isnan(Block1_xmax))
        Block1_xmax = Inf;
    else
        Block1_xmax = max(Block1_xmax,[],'omitnan');
    end

    Block1_xmin = zeros(1,size(Block1_LowerBoundTimes,1));
    for idx = 1:numel(Block1_xmin)
        tseg = Block1_LowerBoundTimes(idx,:);
        xseg = Block1_LowerBoundAmplitudes(idx,:);
        Block1_xmin(idx) = interp1(tseg,xseg,t,'linear',NaN);
    end
    if all(isnan(Block1_xmin))
        Block1_xmin = -Inf;
    else
        Block1_xmin = max(Block1_xmin,[],'omitnan');
    end
else
    Block1_xmin = -Inf;
    Block1_xmax = Inf;
end

%% Penalty function weight (specify nonnegative)
Weight = 1;
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%% Compute penalty
% Penalty is computed for violation of linear bound constraints.
%
% To compute exterior bound penalty, use the exteriorPenalty function and
% specify the penalty method as 'step' or 'quadratic'.
%
% Alternaltively, use the hyperbolicPenalty or barrierPenalty function for
% computing hyperbolic and barrier penalties.
%
% For more information, see help for these functions.
Penalty = sum(exteriorPenalty(x,Block1_xmin,Block1_xmax,'step'));

%% Compute reward
reward = -Weight * Penalty;
end

The generated reward function takes as input arguments the current value of the verification block
input signals and the simulation time. A negative reward is calculated using a weighted penalty that
acts whenever the current block input signals violate the linear bound constraints defined in the
verification block.

The generated reward function is a starting point for reward design. You can tune the weights or use
a different penalty function to define a more appropriate reward for your reinforcement learning
agent.

Close the Simulink model.

close_system('LevelCheckBlock')

Input Arguments
mpcobj — Linear or nonlinear MPC object
mpc object | nlmpc object

Linear or nonlinear MPC object, specified as an mpc object or an nlmpc object, respectively.

Note that:

• The generated function calculates rewards using signal values at the current time only. Predicted
future values, signal previewing, and control horizon settings are not used in the reward
calculation.

• Using time-varying cost weights and constraints, or updating them online, is not supported.
• Only the standard quadratic cost function, as described in “Optimization Problem” (Model

Predictive Control Toolbox), is supported. Therefore, for mpc objects, using mixed constraint
specifications is not supported. Similarly, for nlmpc objects, custom cost and constraint
specifications are not supported.

Example: mpc(tf([1 1],[1 2 0]),0.1)

blks — Path to model verification blocks
char array | cell array | string array
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Path to model verification blocks, specified as character array, cell array or string array. The
supported Simulink Design Optimization model verification blocks are the following ones.

• Check Against Reference (Simulink Design Optimization)
• Check Custom Bounds (Simulink Design Optimization)
• Check Step Response Characteristics (Simulink Design Optimization)

The generated reward function takes as input arguments the current value of the verification block
input signals and the simulation time. A negative reward is calculated using a weighted penalty that
acts whenever the current block input signals violate the linear bound constraints defined in the
verification block.
Example: "mySimulinkModel02/Check Against Reference"

myFcnName — Function name
string | char vector

Function name, specified as a string object or character vector.
Example: "reward03epf_step"

Tips
By default, the exterior bound penalty function exteriorPenalty is used to calculate the penalty.
Alternatively, to calculate hyperbolic and barrier penalties, you can use the hyperbolicPenalty or
barrierPenalty functions.

See Also
Functions
exteriorPenalty | hyperbolicPenalty | barrierPenalty

Objects
mpc | nlmpc

Topics
“Generate Reward Function from a Model Predictive Controller for a Servomotor”
“Generate Reward Function from a Model Verification Block for a Water Tank System”
“Define Reward Signals”
“Create MATLAB Reinforcement Learning Environments”
“Create Simulink Reinforcement Learning Environments”

Introduced in R2021b
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getActionInfo
Obtain action data specifications from reinforcement learning environment or agent

Syntax
actInfo = getActionInfo(env)
actInfo = getActionInfo(agent)

Description
actInfo = getActionInfo(env) extracts action information from reinforcement learning
environment env.

actInfo = getActionInfo(agent) extracts action information from reinforcement learning
agent agent.

Examples

Extract Action and Observation Information from Reinforcement Learning Environment

Extract action and observation information that you can use to create other environments or agents.

The reinforcement learning environment for this example is the simple longitudinal dynamics for ego
car and lead car. The training goal is to make the ego car travel at a set velocity while maintaining a
safe distance from lead car by controlling longitudinal acceleration (and braking). This example uses
the same vehicle model as the “Adaptive Cruise Control System Using Model Predictive Control”
(Model Predictive Control Toolbox) example.

Open the model and create the reinforcement learning environment.

mdl = 'rlACCMdl';
open_system(mdl);
agentblk = [mdl '/RL Agent'];
% create the observation info
obsInfo = rlNumericSpec([3 1],'LowerLimit',-inf*ones(3,1),'UpperLimit',inf*ones(3,1));
obsInfo.Name = 'observations';
obsInfo.Description = 'information on velocity error and ego velocity';
% action Info
actInfo = rlNumericSpec([1 1],'LowerLimit',-3,'UpperLimit',2);
actInfo.Name = 'acceleration';
% define environment
env = rlSimulinkEnv(mdl,agentblk,obsInfo,actInfo)

env = 
SimulinkEnvWithAgent with properties:

           Model : rlACCMdl
      AgentBlock : rlACCMdl/RL Agent
        ResetFcn : []
  UseFastRestart : on

2 Functions

2-40



The reinforcement learning environment env is a SimulinkWithAgent object with the above
properties.

Extract the action and observation information from the reinforcement learning environment env.

actInfoExt = getActionInfo(env)

actInfoExt = 
  rlNumericSpec with properties:

     LowerLimit: -3
     UpperLimit: 2
           Name: "acceleration"
    Description: [0x0 string]
      Dimension: [1 1]
       DataType: "double"

obsInfoExt = getObservationInfo(env)

obsInfoExt = 
  rlNumericSpec with properties:

     LowerLimit: [3x1 double]
     UpperLimit: [3x1 double]
           Name: "observations"
    Description: "information on velocity error and ego velocity"
      Dimension: [3 1]
       DataType: "double"

The action information contains acceleration values while the observation information contains the
velocity and velocity error values of the ego vehicle.

Input Arguments
env — Reinforcement learning environment
SimulinkEnvWithAgent object

Reinforcement learning environment from which the action information has to be extracted, specified
as a SimulinkEnvWithAgent object.

For more information on reinforcement learning environments, see “Create Simulink Reinforcement
Learning Environments”.

agent — Reinforcement learning agent
rlQAgent object | rlSARSAAgent object | rlDQNAgent object | rlDDPGAgent object | rlPGAgent
object | rlACAgent object

Reinforcement learning agent from which the action information has to be extracted, specified as one
of the following objects:

• rlQAgent
• rlSARSAAgent
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• rlDQNAgent
• rlDDPGAgent
• rlPGAgent
• rlACAgent

For more information on reinforcement learning agents, see “Reinforcement Learning Agents”.

Output Arguments
actInfo — Action data specifications
array of rlNumericSpec objects | array of rlFiniteSetSpec objects

Action data specifications extracted from the reinforcement learning environment, returned as an
array of one of the following:

• rlNumericSpec objects
• rlFiniteSetSpec objects
• A mix of rlNumericSpec and rlFiniteSetSpec objects

See Also
rlNumericSpec | rlFiniteSetSpec | getObservationInfo | rlQAgent | rlSARSAAgent |
rlDQNAgent | rlPGAgent | rlACAgent | rlDDPGAgent

Topics
“Create Simulink Reinforcement Learning Environments”
“Reinforcement Learning Agents”

Introduced in R2019a
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getAction
Obtain action from agent or actor representation given environment observations

Syntax
agentAction = getAction(agent,obs)

actorAction = getAction(actorRep,obs)
[actorAction,nextState] = getAction(actorRep,obs)

Description
Agent

agentAction = getAction(agent,obs) returns the action derived from the policy of a
reinforcement learning agent given environment observations.

Actor Representation

actorAction = getAction(actorRep,obs) returns the action derived from policy
representation actorRep given environment observations obs.

[actorAction,nextState] = getAction(actorRep,obs) returns the updated state of the
actor representation when the actor uses a recurrent neural network as a function approximator.

Examples

Get Actions from Agent

Create an environment interface and obtain its observation and action specifications. For this
environment load the predefined environment used for the discrete cart-pole system.

env = rlPredefinedEnv("CartPole-Discrete");
obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

Create a critic representation.

statePath = [
    featureInputLayer(4,'Normalization','none','Name','state')
    fullyConnectedLayer(24, 'Name', 'CriticStateFC1')
    reluLayer('Name','CriticRelu1')
    fullyConnectedLayer(24,'Name','CriticStateFC2')];
actionPath = [
    featureInputLayer(1,'Normalization','none','Name','action')
    fullyConnectedLayer(24, 'Name', 'CriticActionFC1')];
commonPath = [
    additionLayer(2,'Name','add')
    reluLayer('Name','CriticCommonRelu')
    fullyConnectedLayer(1,'Name','output')];
criticNetwork = layerGraph(statePath);
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criticNetwork = addLayers(criticNetwork, actionPath);
criticNetwork = addLayers(criticNetwork, commonPath);    
criticNetwork = connectLayers(criticNetwork,'CriticStateFC2','add/in1');
criticNetwork = connectLayers(criticNetwork,'CriticActionFC1','add/in2');

Create a representation for the critic.

criticOpts = rlRepresentationOptions('LearnRate',0.01,'GradientThreshold',1);
critic = rlQValueRepresentation(criticNetwork,obsInfo,actInfo,...
    'Observation',{'state'},'Action',{'action'},criticOpts);

Specify agent options, and create a DQN agent using the environment and critic.

agentOpts = rlDQNAgentOptions(...
    'UseDoubleDQN',false, ...    
    'TargetUpdateMethod',"periodic", ...
    'TargetUpdateFrequency',4, ...   
    'ExperienceBufferLength',100000, ...
    'DiscountFactor',0.99, ...
    'MiniBatchSize',256);
agent = rlDQNAgent(critic,agentOpts);

Obtain a discrete action from the agent for a single observation. For this example, use a random
observation array.

act = getAction(agent,{rand(4,1)})

act = 10

You can also obtain actions for a batch of observations. For example, obtain actions for a batch of 10
observations.

actBatch = getAction(agent,{rand(4,1,10)});
size(actBatch)

ans = 1×2

     1    10

actBatch contains one action for each observation in the batch, with each action being one of the
possible discrete actions.

Get Action from Deterministic Actor

Create observation and action information. You can also obtain these specifications from an
environment.

obsinfo = rlNumericSpec([4 1]);
actinfo = rlNumericSpec([2 1]);
numObs = obsinfo.Dimension(1);
numAct = actinfo.Dimension(1);

Create a recurrent deep neural network for the actor.

net = [featureInputLayer(4,'Normalization','none','Name','state')
            fullyConnectedLayer(10,'Name','fc1')

2 Functions

2-44



            reluLayer('Name','relu1')
            fullyConnectedLayer(20,'Name','CriticStateFC2')
            fullyConnectedLayer(numAct,'Name','action')
            tanhLayer('Name','tanh1')];

Create a deterministic actor representation for the network.

actorOptions = rlRepresentationOptions('LearnRate',1e-3,'GradientThreshold',1);
actor = rlDeterministicActorRepresentation(net,obsinfo,actinfo,...
    'Observation',{'state'},'Action',{'tanh1'});

Obtain an action from this actor for a random batch of 20 observations.

act = getAction(actor,{rand(4,1,10)})

act = 1x1 cell array
    {2x1x10 single}

act contains the two computed actions for all 10 observations in the batch.

Input Arguments
agent — Reinforcement learning agent
rlQAgent | rlSARSAAgent | rlDQNAgent | rlPGAgent | rlDDPGAgent | rlTD3Agent | rlACAgent
| rlPPOAgent

Reinforcement learning agent, specified as one of the following objects:

• rlQAgent
• rlSARSAAgent
• rlDQNAgent
• rlPGAgent
• rlDDPGAgent
• rlTD3Agent
• rlACAgent
• rlPPOAgent

actorRep — Actor representation
rlDeterministicActorRepresentation object | rlStochasticActorRepresentation object

Actor representation, specified as either an rlDeterministicActorRepresentation or
rlStochasticActorRepresentation object.

obs — Environment observations
cell array

Environment observations, specified as a cell array with as many elements as there are observation
input channels. Each element of obs contains an array of observations for a single observation input
channel.

The dimensions of each element in obs are MO-by-LB-by-LS, where:
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• MO corresponds to the dimensions of the associated observation input channel.
• LB is the batch size. To specify a single observation, set LB = 1. To specify a batch of observations,

specify LB > 1. If valueRep or qValueRep has multiple observation input channels, then LB must
be the same for all elements of obs.

• LS specifies the sequence length for a recurrent neural network. If valueRep or qValueRep does
not use a recurrent neural network, then LS = 1. If valueRep or qValueRep has multiple
observation input channels, then LS must be the same for all elements of obs.

LB and LS must be the same for both act and obs.

Output Arguments
agentAction — Action value from agent
array

Action value from agent, returned as an array with dimensions MA-by-LB-by-LS, where:

• MA corresponds to the dimensions of the associated action specification.
• LB is the batch size.
• LS is the sequence length for recurrent neural networks. If the actor and critic in agent do not

use recurrent neural networks, then LS = 1.

Note When agents such as rlACAgent, rlPGAgent, or rlPPOAgent use an
rlStochasticActorRepresentation actor with a continuous action space, the constraints set by
the action specification are not enforced by the agent. In these cases, you must enforce action space
constraints within the environment.

actorAction — Action value from actor representation
single-element cell array

Action value from actor representation, returned as a single-element cell array that contains an array
of dimensions MA-by-LB-by-LS, where:

• MA corresponds to the dimensions of the action specification.
• LB is the batch size.
• LS is the sequence length for a recurrent neural network. If actorRep does not use a recurrent

neural network, then LS = 1.

Note rlStochasticActorRepresentation actors with continuous action spaces do not enforce
constraints set by the action specification. In these cases, you must enforce action space constraints
within the environment.

nextState — Actor representation updated state
cell array

Actor representation updated state, returned as a cell array. If actorRep does not use a recurrent
neural network, then state is an empty cell array.

You can set the state of the representation to state using the setState function. For example:
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valueRep = setState(actorRep,state);

See Also
getValue | getMaxQValue

Topics
“Create Custom Reinforcement Learning Agents”
“Train Reinforcement Learning Policy Using Custom Training Loop”

Introduced in R2020a
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getActor
Package: rl.agent

Get actor representation from reinforcement learning agent

Syntax
actor = getActor(agent)

Description
actor = getActor(agent) returns the actor representation object for the specified reinforcement
learning agent.

Examples

Modify Actor Parameter Values

Assume that you have an existing trained reinforcement learning agent. For this example, load the
trained agent from “Train DDPG Agent to Control Double Integrator System”.

load('DoubleIntegDDPG.mat','agent') 

Obtain the actor representation from the agent.

actor = getActor(agent);

Obtain the learnable parameters from the actor.

params = getLearnableParameters(actor);

Modify the parameter values. For this example, simply multiply all of the parameters by 2.

modifiedParams = cellfun(@(x) x*2,params,'UniformOutput',false);

Set the parameter values of the actor to the new modified values.

actor = setLearnableParameters(actor,modifiedParams);

Set the actor in the agent to the new modified actor.

agent = setActor(agent,actor);

Modify Deep Neural Networks in Reinforcement Learning Agent

Create an environment with a continuous action space and obtain its observation and action
specifications. For this example, load the environment used in the example “Train DDPG Agent to
Control Double Integrator System”.
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Load the predefined environment.

env = rlPredefinedEnv("DoubleIntegrator-Continuous")

env = 
  DoubleIntegratorContinuousAction with properties:

             Gain: 1
               Ts: 0.1000
      MaxDistance: 5
    GoalThreshold: 0.0100
                Q: [2x2 double]
                R: 0.0100
         MaxForce: Inf
            State: [2x1 double]

Obtain observation and action specifications.

obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

Create a PPO agent from the environment observation and action specifications.

agent = rlPPOAgent(obsInfo,actInfo);

To modify the deep neural networks within a reinforcement learning agent, you must first extract the
actor and critic representations.

actor = getActor(agent);
critic = getCritic(agent);

Extract the deep neural networks from both the actor and critic representations.

actorNet = getModel(actor);
criticNet = getModel(critic);

The networks are dlnetwork objects. To view them using the plot function, you must convert them
to layerGraph objects.

For example, view the actor network.

plot(layerGraph(actorNet))
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To validate a network, use analyzeNetwork. For example, validate the critic network.

analyzeNetwork(criticNet)

You can modify the actor and critic networks and save them back to the agent. To modify the
networks, you can use the Deep Network Designer app. To open the app for each network, use the
following commands.

deepNetworkDesigner(layerGraph(criticNet))
deepNetworkDesigner(layerGraph(actorNet))

In Deep Network Designer, modify the networks. For example, you can add additional layers to
your network. When you modify the networks, do not change the input and output layers of the
networks returned by getModel. For more information on building networks, see “Build Networks
with Deep Network Designer”.

To validate the modified network in Deep Network Designer, you must click on Analyze for
dlnetwork, under the Analysis section. To export the modified network structures to the MATLAB®
workspace, generate code for creating the new networks and run this code from the command line.
Do not use the exporting option in Deep Network Designer. For an example that shows how to
generate and run code, see “Create Agent Using Deep Network Designer and Train Using Image
Observations”.

For this example, the code for creating the modified actor and critic networks is in
createModifiedNetworks.m.

createModifiedNetworks
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Each of the modified networks includes an additional fullyConnectedLayer and reluLayer in
their output path. View the modified actor network.

plot(modifiedActorNet)

After exporting the networks, insert the networks into the actor and critic representations.

actor = setModel(actor,modifiedActorNet);
critic = setModel(critic,modifiedCriticNet);

Finally, insert the modified actor and critic representations in the actor and critic objects.

agent = setActor(agent,actor);
agent = setCritic(agent,critic);

Input Arguments
agent — Reinforcement learning agent
rlDDPGAgent object | rlTD3Agent object | rlPGAgent object | rlACAgent object | rlPPOAgent
object | rlSACAgent object

Reinforcement learning agent that contains an actor representation, specified as one of the following:

• rlDDPGAgent object
• rlTD3Agent object
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• rlACAgent object
• rlPGAgent object
• rlPPOAgent object
• rlSACAgent object

Output Arguments
actor — Actor representation
rlDeterministicActorRepresentation object | rlStochasticActorRepresentation object

Actor representation object, specified as one of the following:

• rlDeterministicActorRepresentation object — Returned when agent is an rlDDPGAgent
or rlTD3Agent object

• rlStochasticActorRepresentation object — Returned when agent is an rlACAgent,
rlPGAgent, rlPPOAgent, or rlSACAgent object

See Also
getCritic | setActor | setCritic | getModel | setModel | getLearnableParameters |
setLearnableParameters

Topics
“Create Policy and Value Function Representations”
“Import Policy and Value Function Representations”

Introduced in R2019a
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getCritic
Package: rl.agent

Get critic representation from reinforcement learning agent

Syntax
critic = getCritic(agent)

Description
critic = getCritic(agent) returns the critic representation object for the specified
reinforcement learning agent.

Examples

Modify Critic Parameter Values

Assume that you have an existing trained reinforcement learning agent. For this example, load the
trained agent from “Train DDPG Agent to Control Double Integrator System”.

load('DoubleIntegDDPG.mat','agent') 

Obtain the critic representation from the agent.

critic = getCritic(agent);

Obtain the learnable parameters from the critic.

params = getLearnableParameters(critic);

Modify the parameter values. For this example, simply multiply all of the parameters by 2.

modifiedParams = cellfun(@(x) x*2,params,'UniformOutput',false);

Set the parameter values of the critic to the new modified values.

critic = setLearnableParameters(critic,modifiedParams);

Set the critic in the agent to the new modified critic.

agent = setCritic(agent,critic);

Modify Deep Neural Networks in Reinforcement Learning Agent

Create an environment with a continuous action space and obtain its observation and action
specifications. For this example, load the environment used in the example “Train DDPG Agent to
Control Double Integrator System”.
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Load the predefined environment.

env = rlPredefinedEnv("DoubleIntegrator-Continuous")

env = 
  DoubleIntegratorContinuousAction with properties:

             Gain: 1
               Ts: 0.1000
      MaxDistance: 5
    GoalThreshold: 0.0100
                Q: [2x2 double]
                R: 0.0100
         MaxForce: Inf
            State: [2x1 double]

Obtain observation and action specifications.

obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

Create a PPO agent from the environment observation and action specifications.

agent = rlPPOAgent(obsInfo,actInfo);

To modify the deep neural networks within a reinforcement learning agent, you must first extract the
actor and critic representations.

actor = getActor(agent);
critic = getCritic(agent);

Extract the deep neural networks from both the actor and critic representations.

actorNet = getModel(actor);
criticNet = getModel(critic);

The networks are dlnetwork objects. To view them using the plot function, you must convert them
to layerGraph objects.

For example, view the actor network.

plot(layerGraph(actorNet))
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To validate a network, use analyzeNetwork. For example, validate the critic network.

analyzeNetwork(criticNet)

You can modify the actor and critic networks and save them back to the agent. To modify the
networks, you can use the Deep Network Designer app. To open the app for each network, use the
following commands.

deepNetworkDesigner(layerGraph(criticNet))
deepNetworkDesigner(layerGraph(actorNet))

In Deep Network Designer, modify the networks. For example, you can add additional layers to
your network. When you modify the networks, do not change the input and output layers of the
networks returned by getModel. For more information on building networks, see “Build Networks
with Deep Network Designer”.

To validate the modified network in Deep Network Designer, you must click on Analyze for
dlnetwork, under the Analysis section. To export the modified network structures to the MATLAB®
workspace, generate code for creating the new networks and run this code from the command line.
Do not use the exporting option in Deep Network Designer. For an example that shows how to
generate and run code, see “Create Agent Using Deep Network Designer and Train Using Image
Observations”.

For this example, the code for creating the modified actor and critic networks is in
createModifiedNetworks.m.

createModifiedNetworks
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Each of the modified networks includes an additional fullyConnectedLayer and reluLayer in
their output path. View the modified actor network.

plot(modifiedActorNet)

After exporting the networks, insert the networks into the actor and critic representations.

actor = setModel(actor,modifiedActorNet);
critic = setModel(critic,modifiedCriticNet);

Finally, insert the modified actor and critic representations in the actor and critic objects.

agent = setActor(agent,actor);
agent = setCritic(agent,critic);

Input Arguments
agent — Reinforcement learning agent
rlQAgent object | rlSARSAAgent object | rlDQNAgent object | rlDDPGAgent object | rlTD3Agent
object | rlPGAgent object | rlACAgent object | rlPPOAgent object | rlSACAgent object

Reinforcement learning agent that contains a critic representation, specified as one of the following:

• rlQAgent object
• rlSARSAAgent object
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• rlDQNAgent object
• rlDDPGAgent object
• rlTD3Agent object
• rlACAgent object
• rlPPOAgent object
• rlSACAgent object
• rlPGAgent object that estimates a baseline value function using a critic

Output Arguments
critic — Critic representation
rlValueRepresentation object | rlQValueRepresentation object | two-element row vector of
rlQValueRepresentation objects

Critic representation object, returned as one of the following:

• rlValueRepresentation object — Returned when agent is an rlACAgent, rlPGAgent, or
rlPPOAgent object

• rlQValueRepresentation object — Returned when agent is an rlQAgent, rlSARSAAgent,
rlDQNAgent, rlDDPGAgent, or rlTD3Agent object with a single critic

• Two-element row vector of rlQValueRepresentation objects — Returned when agent is an
rlTD3Agent or rlSACAgent object with two critics

See Also
getActor | setActor | setCritic | getModel | setModel | getLearnableParameters |
setLearnableParameters

Topics
“Create Policy and Value Function Representations”
“Import Policy and Value Function Representations”

Introduced in R2019a
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getLearnableParameters
Package: rl.representation

Obtain learnable parameter values from policy or value function representation

Syntax
val = getLearnableParameters(rep)

Description
val = getLearnableParameters(rep) returns the values of the learnable parameters from the
reinforcement learning policy or value function representation rep.

Examples

Modify Critic Parameter Values

Assume that you have an existing trained reinforcement learning agent. For this example, load the
trained agent from “Train DDPG Agent to Control Double Integrator System”.

load('DoubleIntegDDPG.mat','agent') 

Obtain the critic representation from the agent.

critic = getCritic(agent);

Obtain the learnable parameters from the critic.

params = getLearnableParameters(critic);

Modify the parameter values. For this example, simply multiply all of the parameters by 2.

modifiedParams = cellfun(@(x) x*2,params,'UniformOutput',false);

Set the parameter values of the critic to the new modified values.

critic = setLearnableParameters(critic,modifiedParams);

Set the critic in the agent to the new modified critic.

agent = setCritic(agent,critic);

Modify Actor Parameter Values

Assume that you have an existing trained reinforcement learning agent. For this example, load the
trained agent from “Train DDPG Agent to Control Double Integrator System”.

load('DoubleIntegDDPG.mat','agent') 
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Obtain the actor representation from the agent.

actor = getActor(agent);

Obtain the learnable parameters from the actor.

params = getLearnableParameters(actor);

Modify the parameter values. For this example, simply multiply all of the parameters by 2.

modifiedParams = cellfun(@(x) x*2,params,'UniformOutput',false);

Set the parameter values of the actor to the new modified values.

actor = setLearnableParameters(actor,modifiedParams);

Set the actor in the agent to the new modified actor.

agent = setActor(agent,actor);

Input Arguments
rep — Policy or value function representation
rlValueRepresentation object | rlQValueRepresentation object |
rlDeterministicActorRepresentation object | rlStochasticActorRepresentation object

Policy or value function representation, specified as one of the following:

• rlValueRepresentation object — Value function representation
• rlQValueRepresentation object — Q-value function representation
• rlDeterministicActorRepresentation object — Actor representation with deterministic

actions
• rlStochasticActorRepresentation object — Actor representation with stochastic actions

To create a policy or value function representation, use one of the following methods:

• Create a representation using the corresponding representation object.
• Obtain the existing value function representation from an agent using getCritic
• Obtain the existing policy representation from an agent using getActor.

Output Arguments
val — Learnable parameter values
cell array

Learnable parameter values for the representation object, returned as a cell array. You can modify
these parameter values and set them in the original agent or a different agent using the
setLearnableParameters function.
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Compatibility Considerations
getLearnableParameterValues is now getLearnableParameters
Behavior changed in R2020a

getLearnableParameterValues is now getLearnableParameters. To update your code, change
the function name from getLearnableParameterValues to getLearnableParameters. The
syntaxes are equivalent.

See Also
setLearnableParameters | getActor | getCritic | setActor | setCritic

Topics
“Create Policy and Value Function Representations”
“Import Policy and Value Function Representations”

Introduced in R2019a
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getMaxQValue
Obtain maximum state-value function estimate for Q-value function representation with discrete
action space

Syntax
[maxQ,maxActionIndex] = getMaxQValue(qValueRep,obs)
[maxQ,maxActionIndex,state] = getMaxQValue( ___ )

Description
[maxQ,maxActionIndex] = getMaxQValue(qValueRep,obs) returns the maximum estimated
state-value function for Q-value function representation qValueRep given environment observations
obs. getMaxQValue determines the discrete action for which the Q-value estimate is greatest and
returns that Q value (maxQ) and the corresponding action index (maxActionIndex).

[maxQ,maxActionIndex,state] = getMaxQValue( ___ ) returns the state of the
representation. Use this syntax when qValueRep is a recurrent neural network.

Examples

Obtain Maximum Q-Value Function Estimates

Create an environment and obtain observation and action information.

env = rlPredefinedEnv('CartPole-Discrete');
obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);
numObs = obsInfo.Dimension(1);
numDiscreteAct = numel(actInfo.Elements);

Create a deep neural network for a multi-output Q-value function representation.

criticNetwork = [
    featureInputLayer(4,'Normalization','none','Name','state')
    fullyConnectedLayer(50, 'Name', 'CriticStateFC1')
    reluLayer('Name','CriticRelu1')
    fullyConnectedLayer(20,'Name','CriticStateFC2')
    reluLayer('Name','CriticRelu2')
    fullyConnectedLayer(numDiscreteAct,'Name','output')];

Create a representation for your critic using the recurrent neural network.

criticOptions = rlRepresentationOptions('LearnRate',1e-3,'GradientThreshold',1);
critic = rlQValueRepresentation(criticNetwork,obsInfo,actInfo,...
    'Observation','state',criticOptions);

Obtain value function estimates for each possible discrete action using random observations.

obs = rand(4,1);
val = getValue(critic,{obs})
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val = 2x1 single column vector

    0.0139
   -0.1851

val contains two value function estimates, one for each possible discrete action.

You can obtain the maximum Q-value function estimate across all the discrete actions.

[maxVal,maxIndex] = getMaxQValue(critic,{obs})

maxVal = single
    0.0139

maxIndex = 1

maxVal corresponds to the maximum entry in val.

You can also obtain maximum Q-value function estimates for a batch of observations. For example,
obtain value function estimates for a batch of 10 observations.

[batchVal,batchIndex] = getMaxQValue(critic,{rand(4,1,10)});

Input Arguments
qValueRep — Q-value representation
rlQValueRepresentation object

Q-value representation, specified as an rlQValueRepresentation object.

obs — Environment observations
cell array

Environment observations, specified as a cell array with as many elements as there are observation
input channels. Each element of obs contains an array of observations for a single observation input
channel.

The dimensions of each element in obs are MO-by-LB-by-LS, where:

• MO corresponds to the dimensions of the associated observation input channel.
• LB is the batch size. To specify a single observation, set LB = 1. To specify a batch of observations,

specify LB > 1. If valueRep or qValueRep has multiple observation input channels, then LB must
be the same for all elements of obs.

• LS specifies the sequence length for a recurrent neural network. If valueRep or qValueRep does
not use a recurrent neural network, then LS = 1. If valueRep or qValueRep has multiple
observation input channels, then LS must be the same for all elements of obs.

LB and LS must be the same for both act and obs.

Output Arguments
maxQ — Maximum Q-value estimate
array
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Maximum Q-value estimate across all possible discrete actions, returned as a 1-by-LB-by-LS array,
where:

• LB is the batch size.
• LS specifies the sequence length for a recurrent neural network. If qValueRep does not use a

recurrent neural network, then LS = 1.

maxActionIndex — Action index
array

Action index corresponding to the maximum Q value, returned as a 1-by-LB-by-LS array, where:

• LB is the batch size.
• LS specifies the sequence length for a recurrent neural network. If qValueRep does not use a

recurrent neural network, then LS = 1.

state — Representation state
cell array

Representation state, returned as a cell array. If qValueRep does not use a recurrent neural network,
then state is an empty cell array.

You can set the state of the representation to state using the setState function. For example:

valueRep = setState(qValueRep,state);

See Also
getAction | getValue

Topics
“Create Custom Reinforcement Learning Agents”
“Train Reinforcement Learning Policy Using Custom Training Loop”

Introduced in R2020a
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getModel
Package: rl.representation

Get computational model from policy or value function representation

Syntax
model = getModel(rep)

Description
model = getModel(rep) returns the computational model used by the policy or value function
representation rep.

Examples

Modify Deep Neural Networks in Reinforcement Learning Agent

Create an environment with a continuous action space and obtain its observation and action
specifications. For this example, load the environment used in the example “Train DDPG Agent to
Control Double Integrator System”.

Load the predefined environment.

env = rlPredefinedEnv("DoubleIntegrator-Continuous")

env = 
  DoubleIntegratorContinuousAction with properties:

             Gain: 1
               Ts: 0.1000
      MaxDistance: 5
    GoalThreshold: 0.0100
                Q: [2x2 double]
                R: 0.0100
         MaxForce: Inf
            State: [2x1 double]

Obtain observation and action specifications.

obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

Create a PPO agent from the environment observation and action specifications.

agent = rlPPOAgent(obsInfo,actInfo);

To modify the deep neural networks within a reinforcement learning agent, you must first extract the
actor and critic representations.
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actor = getActor(agent);
critic = getCritic(agent);

Extract the deep neural networks from both the actor and critic representations.

actorNet = getModel(actor);
criticNet = getModel(critic);

The networks are dlnetwork objects. To view them using the plot function, you must convert them
to layerGraph objects.

For example, view the actor network.

plot(layerGraph(actorNet))

To validate a network, use analyzeNetwork. For example, validate the critic network.

analyzeNetwork(criticNet)

You can modify the actor and critic networks and save them back to the agent. To modify the
networks, you can use the Deep Network Designer app. To open the app for each network, use the
following commands.

deepNetworkDesigner(layerGraph(criticNet))
deepNetworkDesigner(layerGraph(actorNet))

In Deep Network Designer, modify the networks. For example, you can add additional layers to
your network. When you modify the networks, do not change the input and output layers of the
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networks returned by getModel. For more information on building networks, see “Build Networks
with Deep Network Designer”.

To validate the modified network in Deep Network Designer, you must click on Analyze for
dlnetwork, under the Analysis section. To export the modified network structures to the MATLAB®
workspace, generate code for creating the new networks and run this code from the command line.
Do not use the exporting option in Deep Network Designer. For an example that shows how to
generate and run code, see “Create Agent Using Deep Network Designer and Train Using Image
Observations”.

For this example, the code for creating the modified actor and critic networks is in
createModifiedNetworks.m.

createModifiedNetworks

Each of the modified networks includes an additional fullyConnectedLayer and reluLayer in
their output path. View the modified actor network.

plot(modifiedActorNet)

After exporting the networks, insert the networks into the actor and critic representations.

actor = setModel(actor,modifiedActorNet);
critic = setModel(critic,modifiedCriticNet);

Finally, insert the modified actor and critic representations in the actor and critic objects.
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agent = setActor(agent,actor);
agent = setCritic(agent,critic);

Input Arguments
rep — Policy or value function representation
rlValueRepresentation object | rlQValueRepresentation object |
rlDeterministicActorRepresentation object | rlStochasticActorRepresentation object

Policy or value function representation, specified as one of the following:

• rlValueRepresentation object — Value function representation
• rlQValueRepresentation object — Q-value function representation
• rlDeterministicActorRepresentation object — Actor representation with deterministic

actions
• rlStochasticActorRepresentation object — Actor representation with stochastic actions

To create a policy or value function representation, use one of the following methods:

• Create a representation using the corresponding representation object.
• Obtain the existing value function representation from an agent using getCritic.
• Obtain the existing policy representation from an agent using getActor.

Note For agents with more than one critic, such as TD3 and SAC agents, you must call getModel for
each critic representation individually, rather than calling getModel for the array of returned by
getCritic.

critics = getCritic(myTD3Agent);
criticNet1 = getModel(critics(1));
criticNet2 = getModel(critics(2));

Output Arguments
model — Computational model
dlnetwork object | rlTable object | 1-by-2 cell array

Computational model, returned as one of the following:

• Deep neural network defined as a dlnetwork object
• rlTable object
• 1-by-2 cell array that contains the function handle for a custom basis function and the basis

function parameters

Compatibility Considerations
getmodel returns a dlnetwork object
Behavior changed in R2021b
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Starting from R2021b, built-in agents use dlnetwork objects as actor and critic representations, so
getModel returns a dlnetwork object.

• Due to numerical differences in the network calculations, previously trained agents might behave
differently. If this happens, you can retrain your agents.

• To use Deep Learning Toolbox™ functions that do not support dlnetwork, you must convert the
network to layerGraph. For example, to use deepNetworkDesigner, replace
deepNetworkDesigner(network) with deepNetworkDesigner(layerGraph(network)).

See Also
getActor | setActor | getCritic | setCritic | setModel | dlnetwork

Topics
“Create Policy and Value Function Representations”

Introduced in R2020b
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getObservationInfo
Obtain observation data specifications from reinforcement learning environment or agent

Syntax
obsInfo = getObservationInfo(env)
obsInfo = getObservationInfo(agent)

Description
obsInfo = getObservationInfo(env) extracts observation information from reinforcement
learning environment env.

obsInfo = getObservationInfo(agent) extracts observation information from reinforcement
learning agent agent.

Examples

Extract Action and Observation Information from Reinforcement Learning Environment

Extract action and observation information that you can use to create other environments or agents.

The reinforcement learning environment for this example is the simple longitudinal dynamics for ego
car and lead car. The training goal is to make the ego car travel at a set velocity while maintaining a
safe distance from lead car by controlling longitudinal acceleration (and braking). This example uses
the same vehicle model as the “Adaptive Cruise Control System Using Model Predictive Control”
(Model Predictive Control Toolbox) example.

Open the model and create the reinforcement learning environment.

mdl = 'rlACCMdl';
open_system(mdl);
agentblk = [mdl '/RL Agent'];
% create the observation info
obsInfo = rlNumericSpec([3 1],'LowerLimit',-inf*ones(3,1),'UpperLimit',inf*ones(3,1));
obsInfo.Name = 'observations';
obsInfo.Description = 'information on velocity error and ego velocity';
% action Info
actInfo = rlNumericSpec([1 1],'LowerLimit',-3,'UpperLimit',2);
actInfo.Name = 'acceleration';
% define environment
env = rlSimulinkEnv(mdl,agentblk,obsInfo,actInfo)

env = 
SimulinkEnvWithAgent with properties:

           Model : rlACCMdl
      AgentBlock : rlACCMdl/RL Agent
        ResetFcn : []
  UseFastRestart : on
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The reinforcement learning environment env is a SimulinkWithAgent object with the above
properties.

Extract the action and observation information from the reinforcement learning environment env.

actInfoExt = getActionInfo(env)

actInfoExt = 
  rlNumericSpec with properties:

     LowerLimit: -3
     UpperLimit: 2
           Name: "acceleration"
    Description: [0x0 string]
      Dimension: [1 1]
       DataType: "double"

obsInfoExt = getObservationInfo(env)

obsInfoExt = 
  rlNumericSpec with properties:

     LowerLimit: [3x1 double]
     UpperLimit: [3x1 double]
           Name: "observations"
    Description: "information on velocity error and ego velocity"
      Dimension: [3 1]
       DataType: "double"

The action information contains acceleration values while the observation information contains the
velocity and velocity error values of the ego vehicle.

Input Arguments
env — Reinforcement learning environment
SimulinkEnvWithAgent object

Reinforcement learning environment from which the observation information has to be extracted,
specified as a SimulinkEnvWithAgent object.

For more information on reinforcement learning environments, see “Create Simulink Reinforcement
Learning Environments”.

agent — Reinforcement learning agent
rlQAgent object | rlSARSAAgent object | rlDQNAgent object | rlDDPGAgent object | rlPGAgent
object | rlACAgent object

Reinforcement learning agent from which the observation information has to be extracted, specified
as one of the following objects:

• rlQAgent
• rlSARSAAgent
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• rlDQNAgent
• rlDDPGAgent
• rlPGAgent
• rlACAgent

For more information on reinforcement learning agents, see “Reinforcement Learning Agents”.

Output Arguments
obsInfo — Observation data specifications
array of rlNumericSpec objects | array of rlFiniteSetSpec objects

Observation data specifications extracted from the reinforcement learning environment, returned as
an array of one of the following:

• rlNumericSpec objects
• rlFiniteSetSpec objects
• A mix of rlNumericSpec and rlFiniteSetSpec objects

See Also
rlNumericSpec | rlFiniteSetSpec | getActionInfo | rlQAgent | rlSARSAAgent |
rlDQNAgent | rlPGAgent | rlACAgent | rlDDPGAgent

Topics
“Create Simulink Reinforcement Learning Environments”
“Reinforcement Learning Agents”

Introduced in R2019a
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getValue
Obtain estimated value function representation

Syntax
value = getValue(valueRep,obs)
value = getValue(qValueRep,obs)
value = getValue(qValueRep,obs,act)
[value,state] = getValue( ___ )

Description
value = getValue(valueRep,obs) returns the estimated value function for the state value
function representation valueRep given environment observations obs.

value = getValue(qValueRep,obs) returns the estimated state-action value functions for the
multiple Q-value function representation qValueRep given environment observations obs. In this
case, qValueRep has as many outputs as there are possible discrete actions, and getValue returns
the state-value function for each action.

value = getValue(qValueRep,obs,act) returns the estimated state-action value function for
the single-output Q-value function representation qValueRep given environment observations obs
and actions act. In this case, getValue returns the state-value function for the given observation
and action inputs.

[value,state] = getValue( ___ ) returns the state of the representation. Use this syntax when
valueRep or qValueRep is a recurrent neural network.

Examples

Obtain State Value Function Estimates

Create an environment and obtain observation and action information.

env = rlPredefinedEnv('CartPole-Discrete');
obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);
numObs = obsInfo.Dimension(1);
numDiscreteAct = numel(actInfo.Elements);

Create a deep neural network for the critic.

criticNetwork = [
    featureInputLayer(4,'Normalization','none','Name','state')
    fullyConnectedLayer(8,'Name','fc')
    reluLayer('Name','relu')
    fullyConnectedLayer(1,'Name','output')];

Create a value function representation object for the critic.
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criticOptions = rlRepresentationOptions('LearnRate',1e-2,'GradientThreshold',1);
critic = rlValueRepresentation(criticNetwork,obsInfo,...
    'Observation','state',criticOptions);

Obtain a value function estimate for a random single observation. Use an observation array with the
same dimensions as the observation specification.

val = getValue(critic,{rand(4,1)})

val = single
    -0.0899

You can also obtain value function estimates for a batch of observations. For example obtain value
functions for a batch of 20 observations.

batchVal = getValue(critic,{rand(4,1,20)});
size(batchVal)

ans = 1×2

     1    20

valBatch contains one value function estimate for each observation in the batch.

Obtain Multi-Output Q-Value Function Estimates

Create an environment and obtain observation and action information.

env = rlPredefinedEnv('CartPole-Discrete');
obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);
numObs = obsInfo.Dimension(1);
numDiscreteAct = numel(actInfo.Elements);

Create a deep neural network for a multi-output Q-value function representation.

criticNetwork = [
    featureInputLayer(4,'Normalization','none','Name','state')
    fullyConnectedLayer(50, 'Name', 'CriticStateFC1')
    reluLayer('Name','CriticRelu1')
    fullyConnectedLayer(20,'Name','CriticStateFC2')
    reluLayer('Name','CriticRelu2')
    fullyConnectedLayer(numDiscreteAct,'Name','output')];

Create a representation for your critic using the recurrent neural network.

criticOptions = rlRepresentationOptions('LearnRate',1e-3,'GradientThreshold',1);
critic = rlQValueRepresentation(criticNetwork,obsInfo,actInfo,...
    'Observation','state',criticOptions);

Obtain value function estimates for each possible discrete action using random observations.

val = getValue(critic,{rand(4,1)})

val = 2x1 single column vector
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    0.0139
   -0.1851

val contains two value function estimates, one for each possible discrete action.

You can also obtain value function estimates for a batch of observations. For example, obtain value
function estimates for a batch of 10 observations.

batchVal = getValue(critic,{rand(4,1,10)});
size(batchVal)

ans = 1×2

     2    10

batchVal contains two value function estimates for each observation in the batch.

Obtain Single-Output Q-Value Function Estimates

Create observation specifications for two observation input channels.

obsinfo = [rlNumericSpec([8 3]), rlNumericSpec([4 1])];

Create action specification.

actinfo = rlNumericSpec([2 1]);

Create a deep neural network for the critic. This network has three input channels (two for
observations and one for actions).

observationPath1 = [
    imageInputLayer([8 3 1],'Normalization','none','Name','state1')
    fullyConnectedLayer(10, 'Name', 'fc1')
    additionLayer(3,'Name','add')
    reluLayer('Name','relu1')
    fullyConnectedLayer(10,'Name','fc4')
    reluLayer('Name', 'relu2')
    fullyConnectedLayer(1,'Name','fc5')];
observationPath2 = [
    imageInputLayer([4 1 1],'Normalization','none','Name','state2')
    fullyConnectedLayer(10, 'Name','fc2')];
actionPath = [
    imageInputLayer([2 1 1],'Normalization','none','Name','action');
    fullyConnectedLayer(10, 'Name', 'fc3')];
net = layerGraph(observationPath1);
net = addLayers(net,observationPath2);
net = addLayers(net,actionPath);
net = connectLayers(net,'fc2','add/in2');
net = connectLayers(net,'fc3','add/in3');

Create the critic representation with this network.

c = rlQValueRepresentation(net,obsinfo,actinfo,...
    'Observation',{'state1','state2'},'Action',{'action'});
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Create random observation set of batch size 64 for each channel.

batchobs_ch1 = rand(8,3,64);
batchobs_ch2 = rand(4,1,64);

Create random action set of batch size 64.

batchact = rand(2,1,64,1);

Obtain the state-action value function estimate for the batch of observations and actions.

qvalue = getValue(c,{batchobs_ch1,batchobs_ch2},{batchact});

Input Arguments
valueRep — Value function representation
rlValueRepresentation object

Value function representation, specified as an rlValueRepresentation object.

qValueRep — Q-value function representation
rlQValueRepresentation object

Q-value function representation, specified as an rlQValueRepresentation object.

obs — Environment observations
cell array

Environment observations, specified as a cell array with as many elements as there are observation
input channels. Each element of obs contains an array of observations for a single observation input
channel.

The dimensions of each element in obs are MO-by-LB-by-LS, where:

• MO corresponds to the dimensions of the associated observation input channel.
• LB is the batch size. To specify a single observation, set LB = 1. To specify a batch of observations,

specify LB > 1. If valueRep or qValueRep has multiple observation input channels, then LB must
be the same for all elements of obs.

• LS specifies the sequence length for a recurrent neural network. If valueRep or qValueRep does
not use a recurrent neural network, then LS = 1. If valueRep or qValueRep has multiple
observation input channels, then LS must be the same for all elements of obs.

LB and LS must be the same for both act and obs.

act — Action
single-element cell array

Action, specified as a single-element cell array that contains an array of action values.

The dimensions of this array are MA-by-LB-by-LS, where:

• MA corresponds to the dimensions of the associated action specification.
• LB is the batch size. To specify a single observation, set LB = 1. To specify a batch of observations,

specify LB > 1.
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• LS specifies the sequence length for a recurrent neural network. If valueRep or qValueRep does
not use a recurrent neural network, then LS = 1.

LB and LS must be the same for both act and obs.

Output Arguments
value — Estimated value function
array

Estimated value function, returned as array with dimensions N-by-LB-by-LS, where:

• N is the number of outputs of the critic network.

• For a state value representation (valueRep), N = 1.
• For a single-output state-action value representation (qValueRep), N = 1.
• For a multi-output state-action value representation (qValueRep), N is the number of discrete

actions.
• LB is the batch size.
• LS is the sequence length for a recurrent neural network.

state — Representation state
cell array

Representation state for a recurrent neural network, returned as a cell array. If valueRep or
qValueRep does not use a recurrent neural network, then state is an empty cell array.

You can set the state of the representation to state using the setState function. For example:

valueRep = setState(valueRep,state);

See Also
getAction | getMaxQValue

Topics
“Create Custom Reinforcement Learning Agents”
“Train Reinforcement Learning Policy Using Custom Training Loop”

Introduced in R2020a
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hyperbolicPenalty
Hyperbolic penalty value for a point with respect to a bounded region

Syntax
p = hyperbolicPenalty(x,xmin,xmax)
p = hyperbolicPenalty( ___ ,lambda,tau)

Description
p = hyperbolicPenalty(x,xmin,xmax) calculates the nonnegative (hyperbolic) penalty vector p
for the point x with respect to the region bounded by xmin and xmax. p has the same dimension as x.
This syntax uses the default values of 1 and 0.1 for the lambda and tau parameters of the
hyperbolic function, respectively.

p = hyperbolicPenalty( ___ ,lambda,tau) specifies both the lambda and tau parameters of
the hyperbolic function. If lambda is an empty matrix its default value is used. Likewise if tau is an
empty matrix or it is omitted, its default value is used instead.

Examples

Calculate Hyperbolic Penalty for a Point

This example shows how to use the hyperbolicPenalty function to calculate the hyperbolic
penalty for a given point with respect to a bounded region.

Calculate the penalty value for the point 0.1 within the interval [-2,2], using default values for the
lambda and tau parameters.

hyperbolicPenalty(0.1,-2,2)

ans = 0.0050

Calculate the penalty value for the point 4 outside the interval [-2,2].

hyperbolicPenalty(4,-2,2)

ans = 4.0033

Calculate the penalty value for the point 0.1 within the interval [-2,2], using a lambda parameter of
5.

hyperbolicPenalty(0.1,-2,2,5)

ans = 0.0010

Calculate the penalty value for the point 4 outside the interval [-2,2], using a lambda parameter of 5.

hyperbolicPenalty(4,-2,2,5)

ans = 20.0007
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Calculate the penalty value for the point 4 outside the interval [-2,2], using a tau parameter of 0.5.

hyperbolicPenalty(4,-2,2,5,0.5)

ans = 20.0167

Calculate the penalty value for the point [-2,0,4] with respect to the box defined by the intervals
[0,1], [-1,1], and [-2,2] along the x, y, and z dimensions, respectively, using the default value for
lambda and a tau parameter of 0.

hyperbolicPenalty([-2 0 4],[0 -1 -2],[1 1 2],1,0)

ans = 3×1

     4
     0
     4

Visualize Penalty Values for an Interval

Create a vector of 1001 equidistant points distributed between -5 and 5.

x = -5:0.01:5;

Calculate penalties for all the points in the vector, using default values for the lambda and tau
parameters.

p = hyperbolicPenalty(x,-2,2);

Plot the points and add grid, labels and title.

plot(x,p)
grid
xlabel("point position");
ylabel("penalty value");
title("Penalty values over an interval");
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Input Arguments
x — Point for which the penalty is calculated
scalar | vector | matrix

Point for which the penalty is calculated, specified as a numeric scalar, vector or matrix.
Example: [0.5; 1.6]

xmin — Lower bounds
scalar | vector | matrix

Lower bounds for x, specified as a numeric scalar, vector or matrix. To use the same minimum value
for all elements in x specify xmin as a scalar.
Example: -1

xmax — Upper bounds
scalar | vector | matrix

Upper bounds for x, specified as a numeric scalar, vector or matrix. To use the same maximum value
for all elements in x specify xmax as a scalar.
Example: 2

lambda — Lambda parameter of the hyperbolic function
1 (default) | nonnegative scalar
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Lambda parameter of the hyperbolic function, specified as a scalar.
Example: 3

tau — Tau parameter of the hyperbolic function
0.1 (default) | nonnegative scalar

Tau parameter of the hyperbolic function, specified as a scalar.
Example: 0.3

Output Arguments
p — Penalty value
nonnegative vector

Penalty value, returned as a vector of nonnegative elements. Each element pi depends on the position
of xi with respect to the interval specified by xmini and xmaxi. The hyperbolic penalty function
returns the value:

p(x) = − λ x− xmin + λ2 x− xmin
2 + τ2− λ xmax− x + λ2 xmax− x 2 + τ2

Here, λ is the argument lambda, and τ is the argument tau. Note that for positive values of τ the
returned penalty value is always positive, because on the right side of the equation the magnitude of
the second term is always greater than that of the first, and the magnitude of the fourth term is
always greater than that of the third. If τ is zero, then the returned penalty is zero inside the interval
defined by the bounds, and it grows linearly with x outside this interval. If x is multidimensional, then
the calculation is applied independently on each dimension. Penalty functions are typically used to
generate negative rewards when constraints are violated, such as in generateRewardFunction.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
generateRewardFunction | exteriorPenalty | barrierPenalty

Topics
“Generate Reward Function from a Model Predictive Controller for a Servomotor”
“Define Reward Signals”

Introduced in R2021b
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inspectTrainingResult
Plot training information from a previous training session

Syntax
inspectTrainingResult(trainResults)

inspectTrainingResult(agentResults)

Description
By default, the train function shows the training progress and results in the Episode Manager
during training. If you configure training to not show the Episode Manager or you close the Episode
Manager after training, you can view the training results using the inspectTrainingResult
function, which opens the Episode Manager. You can also use inspectTrainingResult to view the
training results for agents saved during training.

inspectTrainingResult(trainResults) opens the Episode Manager and plots the training
results from a previous training session.

inspectTrainingResult(agentResults) opens the Episode Manager and plots the training
results from a previously saved agent structure.

Examples

View Results From Previous Training Session

For this example, assume that you have trained the agent in the “Train Reinforcement Learning
Agent in MDP Environment” example and subsequently closed the Episode Manager.

Load the training information returned by the train function.

load mdpTrainingStats trainingStats

Reopen the Episode Manager for this training session.

inspectTrainingResult(trainingStats)
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View Training Results for Saved Agent

For this example, load the environment and agent for the “Train Reinforcement Learning Agent in
MDP Environment” example.

load mdpAgentAndEnvironment

Specify options for training the agent. Configure the SaveAgentCriteria and SaveAgentValue
options to save all agents with a reward greater than or equal to 13.

trainOpts = rlTrainingOptions;
trainOpts.MaxStepsPerEpisode = 50;
trainOpts.MaxEpisodes = 50;
trainOpts.Plots = "none";
trainOpts.SaveAgentCriteria = "EpisodeReward";
trainOpts.SaveAgentValue = 13;

Train the agent. During training, when an episode has a reward greater than or equal to 13, a copy of
the agent is saved in a savedAgents folder.

rng('default') % for reproducibility
trainingStats = train(qAgent,env,trainOpts);

Load the training results for one of the saved agents. This command loads both the agent and a
structure that contains the corresponding training results.

2 Functions

2-82



load savedAgents/Agent30

View the training results from the saved agent result structure.

inspectTrainingResult(savedAgentResultStruct)

The Episode Manager shows the training progress up to the episode in which the agent was saved.

Input Arguments
trainResults — Training episode data
structure | structure array

Training episode data, specified as a structure or structure array returned by the train function.

agentResults — Saved agent results
structure

Saved agent results, specified as a structure previously saved by the train function. The train
function saves agents when you specify the SaveAgentCriteria and SaveAgentValue options in
the rlTrainingOptions object used during training.

When you load a saved agent, the agent and its training results are added to the MATLAB workspace
as saved_agent and savedAgentResultStruct, respectively. To plot the training data for this
agent, use the following command.
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inspectTrainingResult(savedAgentResultStruct)

For multi-agent training, savedAgentResultStruct contains structure fields with training results
for all the trained agents.

See Also
Functions
train

Topics
“Train Reinforcement Learning Agents”

Introduced in R2021a
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rlPredefinedEnv
Create a predefined reinforcement learning environment

Syntax
env = rlPredefinedEnv(keyword)

Description
env = rlPredefinedEnv(keyword) takes a predefined keyword keyword representing the
environment name to create a MATLAB or Simulink reinforcement learning environment env. The
environment env models the dynamics with which the agent interacts, generating rewards and
observations in response to agent actions.

Examples

Basic Grid World Reinforcement Learning Environment

Use the predefined 'BasicGridWorld' keyword to create a basic grid world reinforcement learning
environment.

env = rlPredefinedEnv('BasicGridWorld')

env = 
  rlMDPEnv with properties:

       Model: [1x1 rl.env.GridWorld]
    ResetFcn: []

Continuous Double Integrator Reinforcement Learning Environment

Use the predefined 'DoubleIntegrator-Continuous' keyword to create a continuous double
integrator reinforcement learning environment.

env = rlPredefinedEnv('DoubleIntegrator-Continuous')

env = 
  DoubleIntegratorContinuousAction with properties:

             Gain: 1
               Ts: 0.1000
      MaxDistance: 5
    GoalThreshold: 0.0100
                Q: [2x2 double]
                R: 0.0100
         MaxForce: Inf
            State: [2x1 double]
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You can visualize the environment using the plot function and interact with it using the reset and
step functions.

plot(env)
observation = reset(env)

observation = 2×1

     4
     0

[observation,reward,isDone] = step(env,16)

observation = 2×1

    4.0800
    1.6000

reward = -16.5559

isDone = logical
   0

Create Continuous Simple Pendulum Model Environment

Use the predefined 'SimplePendulumModel-Continuous' keyword to create a continuous simple
pendulum model reinforcement learning environment.

env = rlPredefinedEnv('SimplePendulumModel-Continuous')

env = 
SimulinkEnvWithAgent with properties:

           Model : rlSimplePendulumModel
      AgentBlock : rlSimplePendulumModel/RL Agent
        ResetFcn : []
  UseFastRestart : on
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Input Arguments
keyword — Predefined keyword representing the environment name
'BasicGridWorld' | 'CartPole-Discrete' | 'DoubleIntegrator-Continuous' |
'SimplePendulumWithImage-Discrete' | 'SimplePendulumModel-Discrete' |
'SimplePendulumModel-Continuous' | 'CartPoleSimscapeModel-Continuous' | ...

Predefined keyword representing the environment name, specified as one of the following:

MATLAB Environment

• 'BasicGridWorld'
• 'CartPole-Discrete'
• 'CartPole-Continuous'
• 'DoubleIntegrator-Discrete'
• 'DoubleIntegrator-Continuous'
• 'SimplePendulumWithImage-Discrete'
• 'SimplePendulumWithImage-Continuous'
• 'WaterFallGridWorld-Stochastic'
• 'WaterFallGridWorld-Deterministic'

Simulink Environment

• 'SimplePendulumModel-Discrete'
• 'SimplePendulumModel-Continuous'
• 'CartPoleSimscapeModel-Discrete'
• 'CartPoleSimscapeModel-Continuous'

Output Arguments
env — MATLAB or Simulink environment object
rlMDPEnv object | CartPoleDiscreteAction object | CartPoleContinuousAction object |
DoubleIntegratorDiscreteAction object | DoubleIntegratorContinuousAction object |
SimplePendlumWithImageDiscreteAction object |
SimplePendlumWithImageContinuousAction object | SimulinkEnvWithAgent object

MATLAB or Simulink environment object, returned as one of the following:

• rlMDPEnv object, when you use one of the following keywords.

• 'BasicGridWorld'
• 'WaterFallGridWorld-Stochastic'
• 'WaterFallGridWorld-Deterministic'

• CartPoleDiscreteAction object, when you use the 'CartPole-Discrete' keyword.
• CartPoleContinuousAction object, when you use the 'CartPole-Continuous' keyword.
• DoubleIntegratorDiscreteAction object, when you use the 'DoubleIntegrator-

Discrete' keyword.

 rlPredefinedEnv

2-87



• DoubleIntegratorContinuousAction object, when you use the 'DoubleIntegrator-
Continuous' keyword.

• SimplePendlumWithImageDiscreteAction object, when you use the
'SimplePendulumWithImage-Discrete' keyword.

• SimplePendlumWithImageContinuousAction object, when you use the
'SimplePendulumWithImage-Continuous' keyword.

• SimulinkEnvWithAgent object, when you use one of the following keywords.

• 'SimplePendulumModel-Discrete'
• 'SimplePendulumModel-Continuous'
• 'CartPoleSimscapeModel-Discrete'
• 'CartPoleSimscapeModel-Continuous'

See Also
Topics
“Create MATLAB Reinforcement Learning Environments”
“Create Simulink Reinforcement Learning Environments”
“Load Predefined Control System Environments”
“Load Predefined Simulink Environments”

Introduced in R2019a
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rlRepresentation
(Not recommended) Model representation for reinforcement learning agents

Note rlRepresentation is not recommended. Use rlValueRepresentation,
rlQValueRepresentation, rlDeterministicActorRepresentation, or
rlStochasticActorRepresentation instead. For more information, see “Compatibility
Considerations”.

Syntax
rep = rlRepresentation(net,obsInfo,'Observation',obsNames)
rep = rlRepresentation(net,obsInfo,actInfo,'Observation',obsNames,'Action',
actNames)

tableCritic = rlRepresentation(tab)

critic = rlRepresentation(basisFcn,W0,obsInfo)
critic = rlRepresentation(basisFcn,W0,oaInfo)
actor = rlRepresentation(basisFcn,W0,obsInfo,actInfo)

rep = rlRepresentation( ___ ,repOpts)

Description
Use rlRepresentation to create a function approximator representation for the actor or critic of a
reinforcement learning agent. To do so, you specify the observation and action signals for the training
environment and options that affect the training of an agent that uses the representation. For more
information on creating representations, see “Create Policy and Value Function Representations”.

rep = rlRepresentation(net,obsInfo,'Observation',obsNames) creates a representation
for the deep neural network net. The observation names obsNames are the network input layer
names. obsInfo contains the corresponding observation specifications for the training environment.
Use this syntax to create a representation for a critic that does not require action inputs, such as a
critic for an rlACAgent or rlPGAgent agent.

rep = rlRepresentation(net,obsInfo,actInfo,'Observation',obsNames,'Action',
actNames) creates a representation with action signals specified by the names actNames and
specification actInfo. Use this syntax to create a representation for any actor, or for a critic that
takes both observation and action as input, such as a critic for an rlDQNAgent or rlDDPGAgent
agent.

tableCritic = rlRepresentation(tab) creates a critic representation for the value table or Q
table tab. When you create a table representation, you specify the observation and action
specifications when you create tab.

critic = rlRepresentation(basisFcn,W0,obsInfo) creates a linear basis function
representation using the handle to a custom basis function basisFcn and initial weight vector W0.
obsInfo contains the corresponding observation specifications for the training environment. Use
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this syntax to create a representation for a critic that does not require action inputs, such as a critic
for an rlACAgent or rlPGAgent agent.

critic = rlRepresentation(basisFcn,W0,oaInfo) creates a linear basis function
representation using the specification cell array oaInfo, where oaInfo = {obsInfo,actInfo}.
Use this syntax to create a representation for a critic that takes both observations and actions as
inputs, such as a critic for an rlDQNAgent or rlDDPGAgent agent.

actor = rlRepresentation(basisFcn,W0,obsInfo,actInfo) creates a linear basis function
representation using the specified observation and action specifications, obsInfo and actInfo,
respectively. Use this syntax to create a representation for an actor that takes observations as inputs
and generates actions.

rep = rlRepresentation( ___ ,repOpts) creates a representation using additional options that
specify learning parameters for the representation when you train an agent. Available options include
the optimizer used for training and the learning rate. Use rlRepresentationOptions to create the
options set repOpts. You can use this syntax with any of the previous input-argument combinations.

Examples

Create Actor and Critic Representations

Create an actor representation and a critic representation that you can use to define a reinforcement
learning agent such as an Actor Critic (AC) agent.

For this example, create actor and critic representations for an agent that can be trained against the
cart-pole environment described in “Train AC Agent to Balance Cart-Pole System”. First, create the
environment. Then, extract the observation and action specifications from the environment. You need
these specifications to define the agent and critic representations.

env = rlPredefinedEnv("CartPole-Discrete");
obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

For a state-value-function critic such as those used for AC or PG agents, the inputs are the
observations and the output should be a scalar value, the state value. For this example, create the
critic representation using a deep neural network with one output, and with observation signals
corresponding to x,xdot,theta,thetadot as described in “Train AC Agent to Balance Cart-Pole
System”. You can obtain the number of observations from the obsInfo specification. Name the
network layer input 'observation'.
numObservation = obsInfo.Dimension(1);
criticNetwork = [
    imageInputLayer([numObservation 1 1],'Normalization','none','Name','observation')
    fullyConnectedLayer(1,'Name','CriticFC')];

Specify options for the critic representation using rlRepresentationOptions. These options
control parameters of critic network learning, when you train an agent that incorporates the critic
representation. For this example, set the learning rate to 0.05 and the gradient threshold to 1.
repOpts = rlRepresentationOptions('LearnRate',5e-2,'GradientThreshold',1);

Create the critic representation using the specified neural network and options. Also, specify the
action and observation information for the critic. Set the observation name to 'observation',
which is the name you used when you created the network input layer for criticNetwork.
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critic = rlRepresentation(criticNetwork,obsInfo,'Observation',{'observation'},repOpts)

critic = 
  rlValueRepresentation with properties:

            Options: [1x1 rl.option.rlRepresentationOptions]
    ObservationInfo: [1x1 rl.util.rlNumericSpec]
         ActionInfo: {1x0 cell}

Similarly, create a network for the actor. An AC agent decides which action to take given observations
using an actor representation. For an actor, the inputs are the observations, and the output depends
on whether the action space is discrete or continuous. For the actor of this example, there are two
possible discrete actions, –10 or 10. Thus, to create the actor, use a deep neural network with the
same observation input as the critic, that can output these two values. You can obtain the number of
actions from the actInfo specification. Name the output 'action'.
numAction = numel(actInfo.Elements); 
actorNetwork = [
    imageInputLayer([4 1 1], 'Normalization','none','Name','observation')
    fullyConnectedLayer(numAction,'Name','action')];

Create the actor representation using the observation name and specification and the action name
and specification. Use the same representation options.

actor = rlRepresentation(actorNetwork,obsInfo,actInfo,...
    'Observation',{'observation'},'Action',{'action'},repOpts)

actor = 
  rlStochasticActorRepresentation with properties:

            Options: [1x1 rl.option.rlRepresentationOptions]
    ObservationInfo: [1x1 rl.util.rlNumericSpec]
         ActionInfo: [1x1 rl.util.rlFiniteSetSpec]

You can now use the actor and critic representations to create an AC agent.

agentOpts = rlACAgentOptions(...
    'NumStepsToLookAhead',32,...
    'DiscountFactor',0.99);
agent = rlACAgent(actor,critic,agentOpts)

agent = 
  rlACAgent with properties:

    AgentOptions: [1x1 rl.option.rlACAgentOptions]

Create Q Table Representation

This example shows how to create a Q Table representation:

Create an environment interface.

env = rlPredefinedEnv("BasicGridWorld");

Create a Q table using the action and observation specifications from the environment.
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qTable = rlTable(getObservationInfo(env),getActionInfo(env));

Create a representation for the Q table.

tableRep = rlRepresentation(qTable);

Create Quadratic Basis Function Critic Representation

This example shows how to create a linear basis function critic representation.

Assume that you have an environment, env. For this example, load the environment used in the
“Train Custom LQR Agent” example.

load myLQREnv.mat

Obtain the observation and action specifications from the environment.

obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

Create a custom basis function. In this case, use the quadratic basis function from “Train Custom
LQR Agent”.

Set the dimensions and parameters required for your basis function.

n = 6;

Set an initial weight vector.

w0 = 0.1*ones(0.5*(n+1)*n,1);

Create a representation using a handle to the custom basis function.
critic = rlRepresentation(@(x,u) computeQuadraticBasis(x,u,n),w0,{obsInfo,actInfo});

Function to compute the quadratic basis from “Train Custom LQR Agent”.

function B = computeQuadraticBasis(x,u,n)
z = cat(1,x,u);
idx = 1;
for r = 1:n
    for c = r:n
        if idx == 1
            B = z(r)*z(c);
        else
            B = cat(1,B,z(r)*z(c));
        end
        idx = idx + 1;
    end
end
end

Input Arguments
net — Deep neural network for actor or critic
array of Layer objects | layerGraph object | DAGNetwork object | SeriesNetwork object
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Deep neural network for actor or critic, specified as one of the following:

• Array of Layer objects
• layerGraph object
• DAGNetwork object
• SeriesNetwork object
• dlnetwork object

For a list of deep neural network layers, see “List of Deep Learning Layers”. For more information on
creating deep neural networks for reinforcement learning, see “Create Policy and Value Function
Representations”.

obsNames — Observation names
cell array of character vectors

Observation names, specified as a cell array of character vectors. The observation names are the
network input layer names you specify when you create net. The names in obsNames must be in the
same order as the observation specifications in obsInfo.
Example: {'observation'}

obsInfo — Observation specification
spec object | array of spec objects

Observation specification, specified as a reinforcement learning spec object or an array of spec
objects. You can extract obsInfo from an existing environment using getObservationInfo. Or,
you can construct the specs manually using a spec command such as rlFiniteSetSpec or
rlNumericSpec. This specification defines such information about the observations as the
dimensions and names of the observation signals.

actNames — Action name
single-element cell array that contains a character vector

Action name, specified as a single-element cell array that contains a character vector. The action
name is the network layer name you specify when you create net. For critic networks, this layer is
the first layer of the action input path. For actors, this layer is the last layer of the action output path.
Example: {'action'}

actInfo — Action specification
spec object

Action specification, specified as a reinforcement learning spec object. You can extract actInfo from
an existing environment using getActionInfo. Or, you can construct the spec manually using a
spec command such as rlFiniteSetSpec or rlNumericSpec. This specification defines such
information about the action as the dimensions and name of the action signal.

For linear basis function representations, the action signal must be a scalar, a column vector, or a
discrete action.

tab — Value table or Q table for critic
rlTable object

Value table or Q table for critic, specified as an rlTable object. The learnable parameters of a table
representation are the elements of tab.
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basisFcn — Custom basis function
function handle

Custom basis function, specified as a function handle to a user-defined function. For a linear basis
function representation, the output of the representation is f = W'B, where W is a weight array and B
is the column vector returned by the custom basis function. The learnable parameters of a linear
basis function representation are the elements of W.

When creating:

• A critic representation with observation inputs only, your basis function must have the following
signature.

B = myBasisFunction(obs1,obs2,...,obsN)

Here obs1 to obsN are observations in the same order and with the same data type and
dimensions as the observation specifications in obsInfo.

• A critic representation with observation and action inputs, your basis function must have the
following signature.

B = myBasisFunction(obs1,obs2,...,obsN,act)

Here obs1 to obsN are observations in the same order and with the same data type and
dimensions as the observation specifications in the first element of oaInfo, and act has the same
data type and dimensions as the action specification in the second element of oaInfo.

• An actor representation, your basis function must have the following signature.

B = myBasisFunction(obs1,obs2,...,obsN)

Here, obs1 to obsN are observations in the same order and with the same data type and
dimensions as the observation specifications in obsInfo. The data types and dimensions of the
action specification in actInfo affect the data type and dimensions of f.

Example: @(x,u) myBasisFunction(x,u)

W0 — Initial value for linear basis function weight vector
column vector | array

Initial value for linear basis function weight array, W, specified as one of the following:

• Column vector — When creating a critic representation or an actor representation with a
continuous scalar action signal

• Array — When creating an actor representation with a column vector continuous action signal or a
discrete action space.

oaInfo — Observation and action specifications
cell array

Observation and action specifications for creating linear basis function critic representations,
specified as the cell array {obsInfo,actInfo}.

repOpts — Representation options
rlRepresentationOptions object
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Representation options, specified as an option set that you create with rlRepresentationOptions.
Available options include the optimizer used for training and the learning rate. See
rlRepresentationOptions for details.

Output Arguments
rep — Deep neural network representation
rlLayerRepresentation object

Deep neural network representation, returned as an rlLayerRepresentation object. Use this
representation to create an agent for reinforcement learning. For more information, see
“Reinforcement Learning Agents”.

tableCritic — Value or Q table critic representation
rlTableRepresentation object

Value or Q table critic representation, returned as an rlTableRepresentation object. Use this
representation to create an agent for reinforcement learning. For more information, see
“Reinforcement Learning Agents”.

critic — Linear basis function critic representation
rlLinearBasisRepresentation object

Linear basis function critic representation, returned as and rlLinearBasisRepresentation
object. Use this representation to create an agent for reinforcement learning. For more information,
see “Reinforcement Learning Agents”.

actor — Linear basis function actor representation
rlLinearBasisRepresentation object

Linear basis function actor representation, returned as and rlLinearBasisRepresentation
object. Use this representation to create an agent for reinforcement learning. For more information,
see “Reinforcement Learning Agents”.

Compatibility Considerations
rlRepresentation is not recommended
Not recommended starting in R2020a

rlRepresentation is not recommended. Depending on the type of representation being created,
use one of the following objects instead:

• rlValueRepresentation — State value critic, computed based on observations from the
environment.

• rlQValueRepresentation — State-action value critic, computed based on both actions and
observations from the environment.

• rlDeterministicActorRepresentation — Actor with deterministic actions, based on
observations from the environment.

• rlStochasticActorRepresentation — Actor with stochastic actions, based on observations
from the environment.

The following table shows some typical uses of the rlRepresentation function to create neural
network-based critics and actors, and how to update your code with one of the new objects instead.
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Network-Based Representations: Not
Recommended

Network-Based Representations:
Recommended

rep =
rlRepresentation(net,obsInfo,'Observat
ion',obsName), with net having only
observations as inputs, and a single scalar
output.

rep =
rlValueRepresentation(net,obsInfo,'Obs
ervation',obsName). Use this syntax to create
a representation for a critic that does not require
action inputs, such as a critic for an rlACAgent
or rlPGAgent agent.

rep =
rlRepresentation(net,obsInfo,actInfo,'
Observation',obsName,'Action',actName)
, with net having both observations and action as
inputs, and a single scalar output.

rep =
rlQValueRepresentation(net,obsInfo,act
Info,'Observation',obsName,'Action',ac
tName). Use this syntax to create a single-output
state-action value representation for a critic that
takes both observation and action as input, such
as a critic for an rlDQNAgent or rlDDPGAgent
agent.

rep =
rlRepresentation(net,obsInfo,actInfo,'
Observation',obsName,'Action',actName)
, with net having observations as inputs and
actions as outputs, and actInfo defining a
continuous action space.

rep =
rlDeterministicActorRepresentation(net
,obsInfo,actInfo,'Observation',obsName
,'Action',actName). Use this syntax to create
a deterministic actor representation for a
continuous action space.

rep =
rlRepresentation(net,obsInfo,actInfo,'
Observation',obsName,'Action',actName)
, with net having observations as inputs and
actions as outputs, and actInfo defining a
discrete action space.

rep =
rlStochasticActorRepresentation(net,ob
sInfo,actInfo,'Observation',obsName).
Use this syntax to create a stochastic actor
representation for a discrete action space.

The following table shows some typical uses of the rlRepresentation objects to express table-
based critics with discrete observation and action spaces, and how to update your code with one of
the new objects instead.

Table-Based Representations: Not
Recommended

Table-Based Representations: Recommended

rep = rlRepresentation(tab), with tab
containing a value table consisting in a column
vector as long as the number of possible
observations.

rep =
rlValueRepresentation(tab,obsInfo). Use
this syntax to create a representation for a critic
that does not require action inputs, such as a
critic for an rlACAgent or rlPGAgent agent.

rep = rlRepresentation(tab), with tab
containing a Q-value table with as many rows as
the possible observations and as many columns
as the possible actions.

rep =
rlQValueRepresentation(tab,obsInfo,act
Info). Use this syntax to create a single-output
state-action value representation for a critic that
takes both observation and action as input, such
as a critic for an rlDQNAgent or rlDDPGAgent
agent.

The following table shows some typical uses of the rlRepresentation function to create critics and
actors which use a custom basis function, and how to update your code with one of the new objects
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instead. In the recommended function calls, the first input argument is a two-elements cell containing
both the handle to the custom basis function and the initial weight vector or matrix.

Custom Basis Function-Based
Representations: Not Recommended

Custom Basis Function-Based
Representations: Recommended

rep =
rlRepresentation(basisFcn,W0,obsInfo),
where the basis function has only observations as
inputs and W0 is a column vector.

rep =
rlValueRepresentation({basisFcn,W0},ob
sInfo). Use this syntax to create a
representation for a critic that does not require
action inputs, such as a critic for an rlACAgent
or rlPGAgent agent.

rep = rlRepresentation(basisFcn,W0,
{obsInfo,actInfo}), where the basis function
has both observations and action as inputs and
W0 is a column vector.

rep =
rlQValueRepresentation({basisFcn,W0},o
bsInfo,actInfo). Use this syntax to create a
single-output state-action value representation
for a critic that takes both observation and action
as input, such as a critic for an rlDQNAgent or
rlDDPGAgent agent.

rep =
rlRepresentation(basisFcn,W0,obsInfo,a
ctInfo), where the basis function has
observations as inputs and actions as outputs, W0
is a matrix, and actInfo defines a continuous
action space.

rep =
rlDeterministicActorRepresentation({ba
sisFcn,W0},obsInfo,actInfo). Use this
syntax to create a deterministic actor
representation for a continuous action space.

rep =
rlRepresentation(basisFcn,W0,obsInfo,a
ctInfo), where the basis function has
observations as inputs and actions as outputs, W0
is a matrix, and actInfo defines a discrete
action space.

rep =
rlStochasticActorRepresentation({basis
Fcn,W0},obsInfo,actInfo). Use this syntax
to create a deterministic actor representation for
a discrete action space.

See Also
Functions
rlValueRepresentation | rlQValueRepresentation |
rlDeterministicActorRepresentation | rlStochasticActorRepresentation |
rlRepresentationOptions | getActionInfo | getObservationInfo

Topics
“Create Policy and Value Function Representations”
“Reinforcement Learning Agents”

Introduced in R2019a
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rlSimulinkEnv
Create reinforcement learning environment using dynamic model implemented in Simulink

Syntax
env = rlSimulinkEnv(mdl,agentBlocks)
env = rlSimulinkEnv(mdl,agentBlocks,obsInfo,actInfo)
env = rlSimulinkEnv( ___ ,'UseFastRestart',fastRestartToggle)

Description
The rlSimulinkEnv function creates a reinforcement learning environment object from a Simulink
model. The environment object acts an interface so that when you call sim or train, these functions
in turn call the Simulink model to generate experiences for the agents.

env = rlSimulinkEnv(mdl,agentBlocks) creates the reinforcement learning environment
object env for the Simulink model mdl. agentBlocks contains the paths to one or more
reinforcement learning agent blocks in mdl. If you use this syntax, each agent block must reference
an agent object already in the MATLAB workspace.

env = rlSimulinkEnv(mdl,agentBlocks,obsInfo,actInfo) creates the reinforcement
learning environment object env for the model mdl. The two cell arrays obsInfo and actInfo must
contain the observation and action specifications for each agent block in mdl, in the same order as
they appear in agentBlocks.

env = rlSimulinkEnv( ___ ,'UseFastRestart',fastRestartToggle) creates a
reinforcement learning environment object env and additionally enables fast restart. Use this syntax
after any of the input arguments in the previous syntaxes.

Examples

Create Simulink Environment Using Agent in Workspace

Create a Simulink environment using the trained agent and corresponding Simulink model from the
“Create Simulink Environment and Train Agent” example.

Load the agent in the MATLAB® workspace.

load rlWaterTankDDPGAgent

Create an environment for the rlwatertank model, which contains an RL Agent block. Since the
agent used by the block is already in the workspace, you do not need to pass the observation and
action specifications to create the environment.

env = rlSimulinkEnv('rlwatertank','rlwatertank/RL Agent')

env = 
SimulinkEnvWithAgent with properties:

           Model : rlwatertank
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      AgentBlock : rlwatertank/RL Agent
        ResetFcn : []
  UseFastRestart : on

Validate the environment by performing a short simulation for two sample times.

validateEnvironment(env)

You can now train and simulate the agent within the environment by using train and sim,
respectively.

Create Reinforcement Learning Environment for Simulink Model

For this example, consider the rlSimplePendulumModel Simulink model. The model is a simple
frictionless pendulum that initially hangs in a downward position.

Open the model.

mdl = 'rlSimplePendulumModel';
open_system(mdl)

Create rlNumericSpec and rlFiniteSetSpec objects for the observation and action information,
respectively.

obsInfo = rlNumericSpec([3 1]) % vector of 3 observations: sin(theta), cos(theta), d(theta)/dt

obsInfo = 
  rlNumericSpec with properties:

     LowerLimit: -Inf
     UpperLimit: Inf
           Name: [0x0 string]
    Description: [0x0 string]
      Dimension: [3 1]
       DataType: "double"

actInfo = rlFiniteSetSpec([-2 0 2]) % 3 possible values for torque: -2 Nm, 0 Nm and 2 Nm

actInfo = 
  rlFiniteSetSpec with properties:

       Elements: [3x1 double]
           Name: [0x0 string]
    Description: [0x0 string]
      Dimension: [1 1]
       DataType: "double"

You can use dot notation to assign property values for the rlNumericSpec and rlFiniteSetSpec
objects.

obsInfo.Name = 'observations';
actInfo.Name = 'torque';
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Assign the agent block path information, and create the reinforcement learning environment for the
Simulink model using the information extracted in the previous steps.

agentBlk = [mdl '/RL Agent'];
env = rlSimulinkEnv(mdl,agentBlk,obsInfo,actInfo)

env = 
SimulinkEnvWithAgent with properties:

           Model : rlSimplePendulumModel
      AgentBlock : rlSimplePendulumModel/RL Agent
        ResetFcn : []
  UseFastRestart : on

You can also include a reset function using dot notation. For this example, randomly initialize theta0
in the model workspace.

env.ResetFcn = @(in) setVariable(in,'theta0',randn,'Workspace',mdl)

env = 
SimulinkEnvWithAgent with properties:

           Model : rlSimplePendulumModel
      AgentBlock : rlSimplePendulumModel/RL Agent
        ResetFcn : @(in)setVariable(in,'theta0',randn,'Workspace',mdl)
  UseFastRestart : on

Create Simulink Environment for Multiple Agents

Create an environment for the Simulink model from the example “Train Multiple Agents to Perform
Collaborative Task”.

Load the agents in the MATLAB workspace.

load rlCollaborativeTaskAgents

Create an environment for the rlCollaborativeTask model, which has two agent blocks. Since the
agents used by the two blocks (agentA and agentB) are already in the workspace, you do not need
to pass their observation and action specifications to create the environment.

env = rlSimulinkEnv('rlCollaborativeTask',["rlCollaborativeTask/Agent A","rlCollaborativeTask/Agent B"])

env = 
SimulinkEnvWithAgent with properties:

           Model : rlCollaborativeTask
      AgentBlock : [
                     rlCollaborativeTask/Agent A
                     rlCollaborativeTask/Agent B
                   ]
        ResetFcn : []
  UseFastRestart : on
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You can now simulate or train the agents within the environment using sim or train, respectively.

Input Arguments
mdl — Simulink model name
string | character vector

Simulink model name, specified as a string or character vector. The model must contain at least one
RL Agent block.

agentBlocks — Agent block paths
string | character vector | string array

Agent block paths, specified as a string, character vector, or string array.

If mdl contains a single RL Agent block, specify agentBlocks as a string or character vector
containing the block path.

If mdl contains multiple RL Agent blocks, specify agentBlocks as a string array, where each
element contains the path of one agent block.

mdl can contain RL Agent blocks whose path is not included in agentBlocks. Such agent blocks
behave as part of the environment, selecting actions based on their current policies. When you call
sim or train, the experiences of these agents are not returned and their policies are not updated.

Multi-agent simulation is not supported for MATLAB environments.

The agent blocks can be inside of a model reference. For more information on configuring an agent
block for reinforcement learning, see RL Agent.

obsInfo — Observation information
rlNumericSpec object | rlFiniteSetSpec object | array of rlNumericSpec objects | array of
rlFiniteSetSpec objects | cell array

Observation information, specified as a specification object, an array of specification objects, or a cell
array.

If mdl contains a single agent block, specify obsInfo as an rlNumericSpec object, an
rlFiniteSetSpec object, or an array containing a mix of such objects.

If mdl contains multiple agent blocks, specify obsInfo as a cell array, where each cell contains a
specification object or array of specification objects for the corresponding block in agentBlocks.

For more information, see getObservationInfo.

actInfo — Action information
rlNumericSpec object | rlFiniteSetSpec object | cell array

Action information, specified as a specification object or a cell array.

If mdl contains a single agent block, specify actInfo as an rlNumericSpec or rlFiniteSetSpec
object.
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If mdl contains multiple agent blocks, specify actInfo as a cell array, where each cell contains a
specification object for the corresponding block in agentBlocks.

For more information, see getActionInfo.

fastRestartToggle — Option to toggle fast restart
'on' (default) | 'off'

Option to toggle fast restart, specified as either 'on' or 'off'. Fast restart allows you to perform
iterative simulations without compiling a model or terminating the simulation each time.

For more information on fast restart, see “How Fast Restart Improves Iterative Simulations”
(Simulink).

Output Arguments
env — Reinforcement learning environment
SimulinkEnvWithAgent object

Reinforcement learning environment, returned as a SimulinkEnvWithAgent object.

For more information on reinforcement learning environments, see “Create Simulink Reinforcement
Learning Environments”.

See Also
Functions
train | sim | getObservationInfo | getActionInfo | rlNumericSpec | rlFiniteSetSpec

Blocks
RL Agent

Topics
“Train DDPG Agent to Control Double Integrator System”
“Train DDPG Agent to Swing Up and Balance Pendulum”
“Train DDPG Agent to Swing Up and Balance Cart-Pole System”
“Train DDPG Agent to Swing Up and Balance Pendulum with Bus Signal”
“Train DDPG Agent to Swing Up and Balance Pendulum with Image Observation”
“Train DDPG Agent for Adaptive Cruise Control”
“How Fast Restart Improves Iterative Simulations” (Simulink)

Introduced in R2019a
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setActor
Package: rl.agent

Set actor representation of reinforcement learning agent

Syntax
newAgent = setActor(oldAgent,actor)

Description
newAgent = setActor(oldAgent,actor) returns a new reinforcement learning agent,
newAgent, that uses the specified actor representation. Apart from the actor representation, the new
agent has the same configuration as the specified original agent, oldAgent.

Examples

Modify Actor Parameter Values

Assume that you have an existing trained reinforcement learning agent. For this example, load the
trained agent from “Train DDPG Agent to Control Double Integrator System”.

load('DoubleIntegDDPG.mat','agent') 

Obtain the actor representation from the agent.

actor = getActor(agent);

Obtain the learnable parameters from the actor.

params = getLearnableParameters(actor);

Modify the parameter values. For this example, simply multiply all of the parameters by 2.

modifiedParams = cellfun(@(x) x*2,params,'UniformOutput',false);

Set the parameter values of the actor to the new modified values.

actor = setLearnableParameters(actor,modifiedParams);

Set the actor in the agent to the new modified actor.

agent = setActor(agent,actor);

Modify Deep Neural Networks in Reinforcement Learning Agent

Create an environment with a continuous action space and obtain its observation and action
specifications. For this example, load the environment used in the example “Train DDPG Agent to
Control Double Integrator System”.
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Load the predefined environment.

env = rlPredefinedEnv("DoubleIntegrator-Continuous")

env = 
  DoubleIntegratorContinuousAction with properties:

             Gain: 1
               Ts: 0.1000
      MaxDistance: 5
    GoalThreshold: 0.0100
                Q: [2x2 double]
                R: 0.0100
         MaxForce: Inf
            State: [2x1 double]

Obtain observation and action specifications.

obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

Create a PPO agent from the environment observation and action specifications.

agent = rlPPOAgent(obsInfo,actInfo);

To modify the deep neural networks within a reinforcement learning agent, you must first extract the
actor and critic representations.

actor = getActor(agent);
critic = getCritic(agent);

Extract the deep neural networks from both the actor and critic representations.

actorNet = getModel(actor);
criticNet = getModel(critic);

The networks are dlnetwork objects. To view them using the plot function, you must convert them
to layerGraph objects.

For example, view the actor network.

plot(layerGraph(actorNet))
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To validate a network, use analyzeNetwork. For example, validate the critic network.

analyzeNetwork(criticNet)

You can modify the actor and critic networks and save them back to the agent. To modify the
networks, you can use the Deep Network Designer app. To open the app for each network, use the
following commands.

deepNetworkDesigner(layerGraph(criticNet))
deepNetworkDesigner(layerGraph(actorNet))

In Deep Network Designer, modify the networks. For example, you can add additional layers to
your network. When you modify the networks, do not change the input and output layers of the
networks returned by getModel. For more information on building networks, see “Build Networks
with Deep Network Designer”.

To validate the modified network in Deep Network Designer, you must click on Analyze for
dlnetwork, under the Analysis section. To export the modified network structures to the MATLAB®
workspace, generate code for creating the new networks and run this code from the command line.
Do not use the exporting option in Deep Network Designer. For an example that shows how to
generate and run code, see “Create Agent Using Deep Network Designer and Train Using Image
Observations”.

For this example, the code for creating the modified actor and critic networks is in
createModifiedNetworks.m.

createModifiedNetworks
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Each of the modified networks includes an additional fullyConnectedLayer and reluLayer in
their output path. View the modified actor network.

plot(modifiedActorNet)

After exporting the networks, insert the networks into the actor and critic representations.

actor = setModel(actor,modifiedActorNet);
critic = setModel(critic,modifiedCriticNet);

Finally, insert the modified actor and critic representations in the actor and critic objects.

agent = setActor(agent,actor);
agent = setCritic(agent,critic);

Input Arguments
oldAgent — Reinforcement learning agent
rlDDPGAgent object | rlTD3Agent object | rlPGAgent object | rlACAgent object | rlPPOAgent
object

Reinforcement learning agent that contains an actor representation, specified as one of the following:

• rlDDPGAgent object
• rlTD3Agent object
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• rlACAgent object
• rlPGAgent object
• rlPPOAgent object
• rlSACAgent object

actor — Actor representation
rlDeterministicActorRepresentation object | rlStochasticActorRepresentation object

Actor representation object, specified as one of the following:

• rlDeterministicActorRepresentation object — Specify when agent is an rlDDPGAgent or
rlTD3Agent object

• rlStochasticActorRepresentation object — Specify when agent is an rlACAgent,
rlPGAgent, or rlPPOAgent object

The input and output layers of the specified representation must match the observation and action
specifications of the original agent.

To create a policy or value function representation, use one of the following methods:

• Create a representation using the corresponding representation object.
• Obtain the existing policy representation from an agent using getActor.

Output Arguments
newAgent — Updated reinforcement learning agent
rlDDPGAgent object | rlTD3Agent object | rlPGAgent object | rlACAgent object | rlPPOAgent
object

Updated reinforcement learning agent, returned as an agent object that uses the specified actor
representation. Apart from the actor representation, the new agent has the same configuration as
oldAgent.

See Also
getActor | getCritic | setCritic | getModel | setModel | getLearnableParameters |
setLearnableParameters

Topics
“Create Policy and Value Function Representations”
“Import Policy and Value Function Representations”

Introduced in R2019a
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setCritic
Package: rl.agent

Set critic representation of reinforcement learning agent

Syntax
newAgent = setCritic(oldAgent,critic)

Description
newAgent = setCritic(oldAgent,critic) returns a new reinforcement learning agent,
newAgent, that uses the specified critic representation. Apart from the critic representation, the new
agent has the same configuration as the specified original agent, oldAgent.

Examples

Modify Critic Parameter Values

Assume that you have an existing trained reinforcement learning agent. For this example, load the
trained agent from “Train DDPG Agent to Control Double Integrator System”.

load('DoubleIntegDDPG.mat','agent') 

Obtain the critic representation from the agent.

critic = getCritic(agent);

Obtain the learnable parameters from the critic.

params = getLearnableParameters(critic);

Modify the parameter values. For this example, simply multiply all of the parameters by 2.

modifiedParams = cellfun(@(x) x*2,params,'UniformOutput',false);

Set the parameter values of the critic to the new modified values.

critic = setLearnableParameters(critic,modifiedParams);

Set the critic in the agent to the new modified critic.

agent = setCritic(agent,critic);

Modify Deep Neural Networks in Reinforcement Learning Agent

Create an environment with a continuous action space and obtain its observation and action
specifications. For this example, load the environment used in the example “Train DDPG Agent to
Control Double Integrator System”.
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Load the predefined environment.

env = rlPredefinedEnv("DoubleIntegrator-Continuous")

env = 
  DoubleIntegratorContinuousAction with properties:

             Gain: 1
               Ts: 0.1000
      MaxDistance: 5
    GoalThreshold: 0.0100
                Q: [2x2 double]
                R: 0.0100
         MaxForce: Inf
            State: [2x1 double]

Obtain observation and action specifications.

obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

Create a PPO agent from the environment observation and action specifications.

agent = rlPPOAgent(obsInfo,actInfo);

To modify the deep neural networks within a reinforcement learning agent, you must first extract the
actor and critic representations.

actor = getActor(agent);
critic = getCritic(agent);

Extract the deep neural networks from both the actor and critic representations.

actorNet = getModel(actor);
criticNet = getModel(critic);

The networks are dlnetwork objects. To view them using the plot function, you must convert them
to layerGraph objects.

For example, view the actor network.

plot(layerGraph(actorNet))
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To validate a network, use analyzeNetwork. For example, validate the critic network.

analyzeNetwork(criticNet)

You can modify the actor and critic networks and save them back to the agent. To modify the
networks, you can use the Deep Network Designer app. To open the app for each network, use the
following commands.

deepNetworkDesigner(layerGraph(criticNet))
deepNetworkDesigner(layerGraph(actorNet))

In Deep Network Designer, modify the networks. For example, you can add additional layers to
your network. When you modify the networks, do not change the input and output layers of the
networks returned by getModel. For more information on building networks, see “Build Networks
with Deep Network Designer”.

To validate the modified network in Deep Network Designer, you must click on Analyze for
dlnetwork, under the Analysis section. To export the modified network structures to the MATLAB®
workspace, generate code for creating the new networks and run this code from the command line.
Do not use the exporting option in Deep Network Designer. For an example that shows how to
generate and run code, see “Create Agent Using Deep Network Designer and Train Using Image
Observations”.

For this example, the code for creating the modified actor and critic networks is in
createModifiedNetworks.m.

createModifiedNetworks
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Each of the modified networks includes an additional fullyConnectedLayer and reluLayer in
their output path. View the modified actor network.

plot(modifiedActorNet)

After exporting the networks, insert the networks into the actor and critic representations.

actor = setModel(actor,modifiedActorNet);
critic = setModel(critic,modifiedCriticNet);

Finally, insert the modified actor and critic representations in the actor and critic objects.

agent = setActor(agent,actor);
agent = setCritic(agent,critic);

Input Arguments
oldAgent — Original reinforcement learning agent
rlQAgent object | rlSARSAAgent object | rlDQNAgent object | rlDDPGAgent object | rlTD3Agent
object | rlPGAgent object | rlACAgent object | rlPPOAgent object | rlSACAgent object

Original reinforcement learning agent that contains a critic representation, specified as one of the
following:

• rlQAgent object
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• rlSARSAAgent object
• rlDQNAgent object
• rlDDPGAgent object
• rlTD3Agent object
• rlACAgent object
• rlPPOAgent object
• rlSACAgent object
• rlPGAgent object that estimates a baseline value function using a critic

critic — Critic representation
rlValueRepresentation object | rlQValueRepresentation object | two-element row vector of
rlQValueRepresentation objects

Critic representation object, specified as one of the following:

• rlValueRepresentation object — Returned when agent is an rlACAgent, rlPGAgent, or
rlPPOAgent object

• rlQValueRepresentation object — Returned when agent is an rlQAgent, rlSARSAAgent,
rlDQNAgent, rlDDPGAgent, or rlTD3Agent object with a single critic

• Two-element row vector of rlQValueRepresentation objects — Returned when agent is an
rlTD3Agent or rlSACAgent object with two critics

Output Arguments
newAgent — Updated reinforcement learning agent
rlQAgent object | rlSARSAAgent object | rlDQNAgent object | rlDDPGAgent object | rlTD3Agent
object | rlPGAgent object | rlACAgent object | rlPPOAgent object

Updated reinforcement learning agent, returned as an agent object that uses the specified critic
representation. Apart from the critic representation, the new agent has the same configuration as
oldAgent.

See Also
getActor | getCritic | setActor | getModel | setModel | getLearnableParameters |
setLearnableParameters

Topics
“Create Policy and Value Function Representations”
“Import Policy and Value Function Representations”

Introduced in R2019a
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setLearnableParameters
Package: rl.representation

Set learnable parameter values of policy or value function representation

Syntax
newRep = setLearnableParameters(oldRep,val)

Description
newRep = setLearnableParameters(oldRep,val) returns a new policy or value function
representation, newRep, with the same structure as the original representation, oldRep, and the
learnable parameter values specified in val.

Examples

Modify Critic Parameter Values

Assume that you have an existing trained reinforcement learning agent. For this example, load the
trained agent from “Train DDPG Agent to Control Double Integrator System”.

load('DoubleIntegDDPG.mat','agent') 

Obtain the critic representation from the agent.

critic = getCritic(agent);

Obtain the learnable parameters from the critic.

params = getLearnableParameters(critic);

Modify the parameter values. For this example, simply multiply all of the parameters by 2.

modifiedParams = cellfun(@(x) x*2,params,'UniformOutput',false);

Set the parameter values of the critic to the new modified values.

critic = setLearnableParameters(critic,modifiedParams);

Set the critic in the agent to the new modified critic.

agent = setCritic(agent,critic);

Modify Actor Parameter Values

Assume that you have an existing trained reinforcement learning agent. For this example, load the
trained agent from “Train DDPG Agent to Control Double Integrator System”.
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load('DoubleIntegDDPG.mat','agent') 

Obtain the actor representation from the agent.

actor = getActor(agent);

Obtain the learnable parameters from the actor.

params = getLearnableParameters(actor);

Modify the parameter values. For this example, simply multiply all of the parameters by 2.

modifiedParams = cellfun(@(x) x*2,params,'UniformOutput',false);

Set the parameter values of the actor to the new modified values.

actor = setLearnableParameters(actor,modifiedParams);

Set the actor in the agent to the new modified actor.

agent = setActor(agent,actor);

Input Arguments
oldRep — Original policy or value function representation
rlValueRepresentation object | rlQValueRepresentation object |
rlDeterministicActorRepresentation object | rlStochasticActorRepresentation object

Original policy or value function representation, specified as one of the following:

• rlValueRepresentation object — Value function representation
• rlQValueRepresentation object — Q-value function representation
• rlDeterministicActorRepresentation object — Actor representation with deterministic

actions
• rlStochasticActorRepresentation object — Actor representation with stochastic actions

To create a policy or value function representation, use one of the following methods:

• Create a representation using the corresponding representation object.
• Obtain the existing value function representation from an agent using getCritic
• Obtain the existing policy representation from an agent using getActor.

val — Learnable parameter values
cell array

Learnable parameter values for the representation object, specified as a cell array. The parameters in
val must be compatible with the structure and parameterization of oldRep.

To obtain a cell array of learnable parameter values from an existing representation, which you can
then modify, use the getLearnableParameters function.
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Output Arguments
newRep — New policy or value function representation
rlValueRepresentation | rlQValueRepresentation |
rlDeterministicActorRepresentation | rlStochasticActorRepresentation

New policy or value function representation, returned as a representation object of the same type as
oldRep. newRep has the same structure as oldRep but with parameter values from val.

Compatibility Considerations
setLearnableParameterValues is now setLearnableParameters
Behavior changed in R2020a

setLearnableParameterValues is now setLearnableParameters. To update your code, change
the function name from setLearnableParameterValues to setLearnableParameters. The
syntaxes are equivalent.

See Also
getLearnableParameters | getActor | getCritic | setActor | setCritic

Topics
“Create Policy and Value Function Representations”
“Import Policy and Value Function Representations”

Introduced in R2019a
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setModel
Package: rl.representation

Set computational model for policy or value function representation

Syntax
newRep = setModel(oldRep,model)

Description
newRep = setModel(oldRep,model) returns a new policy or value function representation,
newRep, with the same configuration as the original representation, oldRep, and the computational
model specified in model.

Examples

Modify Deep Neural Networks in Reinforcement Learning Agent

Create an environment with a continuous action space and obtain its observation and action
specifications. For this example, load the environment used in the example “Train DDPG Agent to
Control Double Integrator System”.

Load the predefined environment.

env = rlPredefinedEnv("DoubleIntegrator-Continuous")

env = 
  DoubleIntegratorContinuousAction with properties:

             Gain: 1
               Ts: 0.1000
      MaxDistance: 5
    GoalThreshold: 0.0100
                Q: [2x2 double]
                R: 0.0100
         MaxForce: Inf
            State: [2x1 double]

Obtain observation and action specifications.

obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

Create a PPO agent from the environment observation and action specifications.

agent = rlPPOAgent(obsInfo,actInfo);

To modify the deep neural networks within a reinforcement learning agent, you must first extract the
actor and critic representations.
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actor = getActor(agent);
critic = getCritic(agent);

Extract the deep neural networks from both the actor and critic representations.

actorNet = getModel(actor);
criticNet = getModel(critic);

The networks are dlnetwork objects. To view them using the plot function, you must convert them
to layerGraph objects.

For example, view the actor network.

plot(layerGraph(actorNet))

To validate a network, use analyzeNetwork. For example, validate the critic network.

analyzeNetwork(criticNet)

You can modify the actor and critic networks and save them back to the agent. To modify the
networks, you can use the Deep Network Designer app. To open the app for each network, use the
following commands.

deepNetworkDesigner(layerGraph(criticNet))
deepNetworkDesigner(layerGraph(actorNet))

In Deep Network Designer, modify the networks. For example, you can add additional layers to
your network. When you modify the networks, do not change the input and output layers of the
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networks returned by getModel. For more information on building networks, see “Build Networks
with Deep Network Designer”.

To validate the modified network in Deep Network Designer, you must click on Analyze for
dlnetwork, under the Analysis section. To export the modified network structures to the MATLAB®
workspace, generate code for creating the new networks and run this code from the command line.
Do not use the exporting option in Deep Network Designer. For an example that shows how to
generate and run code, see “Create Agent Using Deep Network Designer and Train Using Image
Observations”.

For this example, the code for creating the modified actor and critic networks is in
createModifiedNetworks.m.

createModifiedNetworks

Each of the modified networks includes an additional fullyConnectedLayer and reluLayer in
their output path. View the modified actor network.

plot(modifiedActorNet)

After exporting the networks, insert the networks into the actor and critic representations.

actor = setModel(actor,modifiedActorNet);
critic = setModel(critic,modifiedCriticNet);

Finally, insert the modified actor and critic representations in the actor and critic objects.
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agent = setActor(agent,actor);
agent = setCritic(agent,critic);

Input Arguments
oldRep — Policy or value function representation
rlValueRepresentation object | rlQValueRepresentation object |
rlDeterministicActorRepresentation object | rlStochasticActorRepresentation object

Policy or value function representation, specified as one of the following:

• rlValueRepresentation object — Value function representation
• rlQValueRepresentation object — Q-value function representation
• rlDeterministicActorRepresentation object — Actor representation with deterministic

actions
• rlStochasticActorRepresentation object — Actor representation with stochastic actions

To create a policy or value function representation, use one of the following methods.

• Create a representation using the corresponding representation object.
• Obtain the existing value function representation from an agent using getCritic.
• Obtain the existing policy representation from an agent using getActor.

model — Computational model
array of Layer objects | layerGraph object | DAGNetwork object | dlnetwork object | rlTable
object | 1-by-2 cell array

Computational model, specified as one of the following:

• Deep neural network defined as an array of Layer objects, a layerGraph object, a DAGNetwork
object, or a dlnetwork object. The input and output layers of model must have the same names
and dimensions as the network returned by getModel for the same representation. Here, the
output layer is the layer immediately before the output loss layer.

• rlTable object with the same dimensions as the table model defined in newRep.
• 1-by-2 cell array that contains the function handle for a custom basis function and the basis

function parameters.

When specifying a new model, you must use the same type of model as the one already defined in
newRep.

Note For agents with more than one critic, such as TD3 and SAC agents, you must call setModel for
each critic representation individually, rather than calling setModel for the array of returned by
getCritic.

critics = getCritic(myTD3Agent);
% Modify critic networks.
critics(1) = setModel(critics(1),criticNet1);
critics(2) = setModel(critics(2),criticNet2);
myTD3Agent = setCritic(myTD3Agent,critics);
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Output Arguments
newRep — New policy or value function representation
rlValueRepresentation | rlQValueRepresentation |
rlDeterministicActorRepresentation | rlStochasticActorRepresentation

New policy or value function representation, returned as a representation object of the same type as
oldRep. Apart from the new computational model, newRep is the same as oldRep.

See Also
getActor | setActor | getCritic | setCritic | getModel

Topics
“Create Policy and Value Function Representations”

Introduced in R2020b
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sim
Package: rl.env

Simulate trained reinforcement learning agents within specified environment

Syntax
experience = sim(env,agents)
experience = sim(agents,env)

env = sim( ___ ,simOpts)

Description
experience = sim(env,agents) simulates one or more reinforcement learning agents within an
environment, using default simulation options.

experience = sim(agents,env) performs the same simulation as the previous syntax.

env = sim( ___ ,simOpts) uses the simulation options object simOpts. Use simulation options to
specify parameters such as the number of steps per simulation or the number of simulations to run.
Use this syntax after any of the input arguments in the previous syntaxes.

Examples

Simulate Reinforcement Learning Environment

Simulate a reinforcement learning environment with an agent configured for that environment. For
this example, load an environment and agent that are already configured. The environment is a
discrete cart-pole environment created with rlPredefinedEnv. The agent is a policy gradient
(rlPGAgent) agent. For more information about the environment and agent used in this example, see
“Train PG Agent to Balance Cart-Pole System”.

rng(0) % for reproducibility
load RLSimExample.mat
env

env = 
  CartPoleDiscreteAction with properties:

                  Gravity: 9.8000
                 MassCart: 1
                 MassPole: 0.1000
                   Length: 0.5000
                 MaxForce: 10
                       Ts: 0.0200
    ThetaThresholdRadians: 0.2094
               XThreshold: 2.4000
      RewardForNotFalling: 1
        PenaltyForFalling: -5
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                    State: [4x1 double]

agent

agent = 
  rlPGAgent with properties:

    AgentOptions: [1x1 rl.option.rlPGAgentOptions]

Typically, you train the agent using train and simulate the environment to test the performance of
the trained agent. For this example, simulate the environment using the agent you loaded. Configure
simulation options, specifying that the simulation run for 100 steps.

simOpts = rlSimulationOptions('MaxSteps',100);

For the predefined cart-pole environment used in this example. you can use plot to generate a
visualization of the cart-pole system. When you simulate the environment, this plot updates
automatically so that you can watch the system evolve during the simulation.

plot(env)

Simulate the environment.

experience = sim(env,agent,simOpts)
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experience = struct with fields:
       Observation: [1x1 struct]
            Action: [1x1 struct]
            Reward: [1x1 timeseries]
            IsDone: [1x1 timeseries]
    SimulationInfo: [1x1 struct]

The output structure experience records the observations collected from the environment, the
action and reward, and other data collected during the simulation. Each field contains a timeseries
object or a structure of timeseries data objects. For instance, experience.Action is a
timeseries containing the action imposed on the cart-pole system by the agent at each step of the
simulation.

experience.Action

ans = struct with fields:
    CartPoleAction: [1x1 timeseries]

Simulate Simulink Environment with Multiple Agents

Simulate an environment created for the Simulink® model used in the example “Train Multiple
Agents to Perform Collaborative Task”, using the agents trained in that example.

Load the agents in the MATLAB® workspace.

load rlCollaborativeTaskAgents

Create an environment for the rlCollaborativeTask Simulink® model, which has two agent
blocks. Since the agents used by the two blocks (agentA and agentB) are already in the workspace,
you do not need to pass their observation and action specifications to create the environment.

env = rlSimulinkEnv('rlCollaborativeTask',["rlCollaborativeTask/Agent A","rlCollaborativeTask/Agent B"]);

Load the parameters that are needed by the rlCollaborativeTask Simulink® model to run.

rlCollaborativeTaskParams

 sim

2-123



Simulate the agents against the environment, saving the experiences in xpr.

xpr = sim(env,[agentA agentB]);

Plot actions of both agents.

subplot(2,1,1); plot(xpr(1).Action.forces)
subplot(2,1,2); plot(xpr(2).Action.forces)

Input Arguments
env — Environment
reinforcement learning environment object

Environment in which the agents act, specified as one of the following kinds of reinforcement
learning environment object:

• A predefined MATLAB or Simulink environment created using rlPredefinedEnv. This kind of
environment does not support training multiple agents at the same time.

• A custom MATLAB environment you create with functions such as rlFunctionEnv or
rlCreateEnvTemplate. This kind of environment does not support training multiple agents at
the same time.

• A custom Simulink environment you create using rlSimulinkEnv. This kind of environment
supports training multiple agents at the same time.
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For more information about creating and configuring environments, see:

• “Create MATLAB Reinforcement Learning Environments”
• “Create Simulink Reinforcement Learning Environments”

When env is a Simulink environment, calling sim compiles and simulates the model associated with
the environment.

agents — Agents
reinforcement learning agent object | array of agent objects

Agents to simulate, specified as a reinforcement learning agent object, such as rlACAgent or
rlDDPGAgent, or as an array of such objects.

If env is a multi-agent environment created with rlSimulinkEnv, specify agents as an array. The
order of the agents in the array must match the agent order used to create env. Multi-agent
simulation is not supported for MATLAB environments.

For more information about how to create and configure agents for reinforcement learning, see
“Reinforcement Learning Agents”.

simOpts — Simulation options
rlSimulationOptions object

Simulation options, specified as an rlSimulationOptions object. Use this argument to specify
options such as:

• Number of steps per simulation
• Number of simulations to run

For details, see rlSimulationOptions.

Output Arguments
experience — Simulation results
structure | structure array

Simulation results, returned as a structure or structure array. The number of rows in the array is
equal to the number of simulations specified by the NumSimulations option of
rlSimulationOptions. The number of columns in the array is the number of agents. The fields of
each experience structure are as follows.

Observation — Observations
structure

Observations collected from the environment, returned as a structure with fields corresponding to the
observations specified in the environment. Each field contains a timeseries of length N + 1, where
N is the number of simulation steps.

To obtain the current observation and the next observation for a given simulation step, use code such
as the following, assuming one of the fields of Observation is obs1.

Obs = getSamples(experience.Observation.obs1,1:N);
NextObs = getSamples(experience.Observation.obs1,2:N+1);
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These values can be useful if you are writing your own training algorithm using sim to generate
experiences for training.

Action — Actions
structure

Actions computed by the agent, returned as a structure with fields corresponding to the action
signals specified in the environment. Each field contains a timeseries of length N, where N is the
number of simulation steps.

Reward — Rewards
timeseries

Reward at each step in the simulation, returned as a timeseries of length N, where N is the
number of simulation steps.

IsDone — Flag indicating termination of episode
timeseries

Flag indicating termination of the episode, returned as a timeseries of a scalar logical signal. This
flag is set at each step by the environment, according to conditions you specify for episode
termination when you configure the environment. When the environment sets this flag to 1,
simulation terminates.

SimulationInfo — Information collected during simulation
structure | vector of Simulink.SimulationOutput objects

Information collected during simulation, returned as one of the following:

• For MATLAB environments, a structure containing the field SimulationError. This structure
contains any errors that occurred during simulation.

• For Simulink environments, a Simulink.SimulationOutput object containing simulation data.
Recorded data includes any signals and states that the model is configured to log, simulation
metadata, and any errors that occurred.

See Also
train | rlSimulationOptions

Topics
“Train Reinforcement Learning Agents”

Introduced in R2019a
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train
Package: rl.agent

Train reinforcement learning agents within a specified environment

Syntax
trainStats = train(env,agents)
trainStats = train(agents,env)

env = train( ___ ,trainOpts)

Description
trainStats = train(env,agents) trains one or more reinforcement learning agents within a
specified environment, using default training options. Although agents is an input argument, after
each training episode, train updates the parameters of each agent specified in agents to maximize
their expected long-term reward from the environment. When training terminates, agents reflects
the state of each agent at the end of the final training episode.

trainStats = train(agents,env) performs the same training as the previous syntax.

env = train( ___ ,trainOpts) trains agents within env, using the training options object
trainOpts. Use training options to specify training parameters such as the criteria for terminating
training, when to save agents, the maximum number of episodes to train, and the maximum number
of steps per episode. Use this syntax after any of the input arguments in the previous syntaxes.

Examples

Train a Reinforcement Learning Agent

Train the agent configured in the “Train PG Agent to Balance Cart-Pole System” example, within the
corresponding environment. The observation from the environment is a vector containing the position
and velocity of a cart, as well as the angular position and velocity of the pole. The action is a scalar
with two possible elements (a force of either -10 or 10 Newtons applied to a cart).

Load the file containing the environment and a PG agent already configured for it.

load RLTrainExample.mat

Specify some training parameters using rlTrainingOptions. These parameters include the
maximum number of episodes to train, the maximum steps per episode, and the conditions for
terminating training. For this example, use a maximum of 1000 episodes and 500 steps per episode.
Instruct the training to stop when the average reward over the previous five episodes reaches 500.
Create a default options set and use dot notation to change some of the parameter values.

trainOpts = rlTrainingOptions;

trainOpts.MaxEpisodes = 1000;
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trainOpts.MaxStepsPerEpisode = 500;
trainOpts.StopTrainingCriteria = "AverageReward";
trainOpts.StopTrainingValue = 500;
trainOpts.ScoreAveragingWindowLength = 5;

During training, the train command can save candidate agents that give good results. Further
configure the training options to save an agent when the episode reward exceeds 500. Save the agent
to a folder called savedAgents.

trainOpts.SaveAgentCriteria = "EpisodeReward";
trainOpts.SaveAgentValue = 500;
trainOpts.SaveAgentDirectory = "savedAgents";

Finally, turn off the command-line display. Turn on the Reinforcement Learning Episode Manager so
you can observe the training progress visually.

trainOpts.Verbose = false;
trainOpts.Plots = "training-progress";

You are now ready to train the PG agent. For the predefined cart-pole environment used in this
example, you can use plot to generate a visualization of the cart-pole system.

plot(env)

When you run this example, both this visualization and the Reinforcement Learning Episode Manager
update with each training episode. Place them side by side on your screen to observe the progress,
and train the agent. (This computation can take 20 minutes or more.)

trainingInfo = train(agent,env,trainOpts);
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Episode Manager shows that the training successfully reaches the termination condition of a reward
of 500 averaged over the previous five episodes. At each training episode, train updates agent with
the parameters learned in the previous episode. When training terminates, you can simulate the
environment with the trained agent to evaluate its performance. The environment plot updates during
simulation as it did during training.

simOptions = rlSimulationOptions('MaxSteps',500);
experience = sim(env,agent,simOptions);

During training, train saves to disk any agents that meet the condition specified with
trainOps.SaveAgentCritera and trainOpts.SaveAgentValue. To test the performance of any
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of those agents, you can load the data from the data files in the folder you specified using
trainOpts.SaveAgentDirectory, and simulate the environment with that agent.

Train Multiple Agents to Perform Collaborative Task

This example shows how to set up a multi-agent training session on a Simulink® environment. In the
example, you train two agents to collaboratively perform the task of moving an object.

The environment in this example is a frictionless two dimensional surface containing elements
represented by circles. A target object C is represented by the blue circle with a radius of 2 m, and
robots A (red) and B (green) are represented by smaller circles with radii of 1 m each. The robots
attempt to move object C outside a circular ring of a radius 8 m by applying forces through collision.
All elements within the environment have mass and obey Newton's laws of motion. In addition,
contact forces between the elements and the environment boundaries are modeled as spring and
mass damper systems. The elements can move on the surface through the application of externally
applied forces in the X and Y directions. There is no motion in the third dimension and the total
energy of the system is conserved.

Create the set of parameters required for this example.

rlCollaborativeTaskParams

Open the Simulink model.

 train

2-131



mdl = "rlCollaborativeTask";
open_system(mdl)

For this environment:

• The 2-dimensional space is bounded from –12 m to 12 m in both the X and Y directions.
• The contact spring stiffness and damping values are 100 N/m and 0.1 N/m/s, respectively.
• The agents share the same observations for positions, velocities of A, B, and C and the action

values from the last time step.
• The simulation terminates when object C moves outside the circular ring.
• At each time step, the agents receive the following reward:
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rA = rglobal + rlocal, A
rB = rglobal + rlocal, B
rglobal = 0 . 001dc

rlocal, A = − 0 . 005dAC− 0 . 008uA
2

rlocal, B = − 0 . 005dBC− 0 . 008uB
2

Here:

• rAand rB are the rewards received by agents A and B, respectively.
• rglobal is a team reward that is received by both agents as object C moves closer towards the

boundary of the ring.
• rlocal, A and rlocal, B are local penalties received by agents A and B based on their distances from

object C and the magnitude of the action from the last time step.
• dC is the distance of object C from the center of the ring.
• dAC and dBC are the distances between agent A and object C and agent B and object C,

respectively.
• uA and uB are the action values of agents A and B from the last time step.

This example uses proximal policy optimization (PPO) agents with discrete action spaces. To learn
more about PPO agents, see “Proximal Policy Optimization Agents”. The agents apply external forces
on the robots that result in motion. At every time step, the agents select the actions uA, B = FX , FY ,
where FX, FY is one of the following pairs of externally applied forces.

FX = − 1 . 0 N, FY = − 1 . 0 N

FX = − 1 . 0 N, FY = 0

FX = − 1 . 0 N, FY = 1 . 0 N

FX = 0, FY = − 1 . 0 N

FX = 0, FY = 0

FX = 0, FY = 1 . 0 N

FX = 1 . 0 N, FY = − 1 . 0 N

FX = 1 . 0 N, FY = 0

FX = 1 . 0 N, FY = 1 . 0 N

Create Environment

To create a multi-agent environment, specify the block paths of the agents using a string array. Also,
specify the observation and action specification objects using cell arrays. The order of the
specification objects in the cell array must match the order specified in the block path array. When
agents are available in the MATLAB workspace at the time of environment creation, the observation
and action specification arrays are optional. For more information on creating multi-agent
environments, see rlSimulinkEnv.
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Create the I/O specifications for the environment. In this example, the agents are homogeneous and
have the same I/O specifications.

% Number of observations
numObs = 16;

% Number of actions
numAct = 2;

% Maximum value of externally applied force (N)
maxF = 1.0;

% I/O specifications for each agent
oinfo = rlNumericSpec([numObs,1]);
ainfo = rlFiniteSetSpec({
    [-maxF -maxF]
    [-maxF  0   ]
    [-maxF  maxF]
    [ 0    -maxF]
    [ 0     0   ]
    [ 0     maxF]
    [ maxF -maxF]
    [ maxF  0   ]
    [ maxF  maxF]});
oinfo.Name = 'observations';
ainfo.Name = 'forces';

Create the Simulink environment interface.

blks = ["rlCollaborativeTask/Agent A", "rlCollaborativeTask/Agent B"];
obsInfos = {oinfo,oinfo};
actInfos = {ainfo,ainfo};
env = rlSimulinkEnv(mdl,blks,obsInfos,actInfos);

Specify a reset function for the environment. The reset function resetRobots ensures that the
robots start from random initial positions at the beginning of each episode.

env.ResetFcn = @(in) resetRobots(in,RA,RB,RC,boundaryR);

Create Agents

PPO agents rely on actor and critic representations to learn the optimal policy. In this example, the
agents maintain neural network-based function approximators for the actor and critic.

Create the critic neural network and representation. The output of the critic network is the state
value function V s  for state s.

% Reset the random seed to improve reproducibility
rng(0)

% Critic networks
criticNetwork = [...
    featureInputLayer(oinfo.Dimension(1),'Normalization','none','Name','observation')
    fullyConnectedLayer(128,'Name','CriticFC1','WeightsInitializer','he')
    reluLayer('Name','CriticRelu1')
    fullyConnectedLayer(64,'Name','CriticFC2','WeightsInitializer','he')
    reluLayer('Name','CriticRelu2')
    fullyConnectedLayer(32,'Name','CriticFC3','WeightsInitializer','he')
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    reluLayer('Name','CriticRelu3')
    fullyConnectedLayer(1,'Name','CriticOutput')];

% Critic representations
criticOpts = rlRepresentationOptions('LearnRate',1e-4);
criticA = rlValueRepresentation(criticNetwork,oinfo,'Observation',{'observation'},criticOpts);
criticB = rlValueRepresentation(criticNetwork,oinfo,'Observation',{'observation'},criticOpts);

The outputs of the actor network are the probabilities π a s of taking each possible action pair at a
certain state s. Create the actor neural network and representation.

% Actor networks
actorNetwork = [...
    featureInputLayer(oinfo.Dimension(1),'Normalization','none','Name','observation')
    fullyConnectedLayer(128,'Name','ActorFC1','WeightsInitializer','he')
    reluLayer('Name','ActorRelu1')
    fullyConnectedLayer(64,'Name','ActorFC2','WeightsInitializer','he')
    reluLayer('Name','ActorRelu2')
    fullyConnectedLayer(32,'Name','ActorFC3','WeightsInitializer','he')
    reluLayer('Name','ActorRelu3')
    fullyConnectedLayer(numel(ainfo.Elements),'Name','Action')
    softmaxLayer('Name','SM')];

% Actor representations
actorOpts = rlRepresentationOptions('LearnRate',1e-4);
actorA = rlStochasticActorRepresentation(actorNetwork,oinfo,ainfo,...
    'Observation',{'observation'},actorOpts);
actorB = rlStochasticActorRepresentation(actorNetwork,oinfo,ainfo,...
    'Observation',{'observation'},actorOpts);

Create the agents. Both agents use the same options.

agentOptions = rlPPOAgentOptions(...
    'ExperienceHorizon',256,...
    'ClipFactor',0.125,...
    'EntropyLossWeight',0.001,...
    'MiniBatchSize',64,...
    'NumEpoch',3,...
    'AdvantageEstimateMethod','gae',...
    'GAEFactor',0.95,...
    'SampleTime',Ts,...
    'DiscountFactor',0.9995);
agentA = rlPPOAgent(actorA,criticA,agentOptions);
agentB = rlPPOAgent(actorB,criticB,agentOptions);

During training, agents collect experiences until either the experience horizon of 256 steps or the
episode termination is reached, and then train from mini-batches of 64 experiences. This example
uses an objective function clip factor of 0.125 to improve training stability and a discount factor of
0.9995 to encourage long-term rewards.

Train Agents

Specify the following training options to train the agents.

• Run the training for at most 1000 episodes, with each episode lasting at most 5000 time steps.
• Stop the training of an agent when its average reward over 100 consecutive episodes is –10 or

more.
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maxEpisodes = 1000;
maxSteps = 5e3;
trainOpts = rlTrainingOptions(...
    'MaxEpisodes',maxEpisodes,...
    'MaxStepsPerEpisode',maxSteps,...
    'ScoreAveragingWindowLength',100,...
    'Plots','training-progress',...
    'StopTrainingCriteria','AverageReward',...
    'StopTrainingValue',-10);

To train multiple agents, specify an array of agents to the train function. The order of agents in the
array must match the order of agent block paths specified during environment creation. Doing so
ensures that the agent objects are linked to their appropriate I/O interfaces in the environment.
Training these agents can take several hours to complete, depending on the available computational
power.

The MAT file rlCollaborativeTaskAgents contains a set of pretrained agents. You can load the
file and to view the performance of the agents. To train the agents yourself, set doTraining to true.

doTraining = false;
if doTraining
    stats = train([agentA, agentB],env,trainOpts);
else
    load('rlCollaborativeTaskAgents.mat');
end

The following figure shows a snapshot of training progress. You can expect different results due to
randomness in the training process.
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Simulate Agents

Simulate the trained agents within the environment.

simOptions = rlSimulationOptions('MaxSteps',maxSteps);
exp = sim(env,[agentA agentB],simOptions);
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For more information on agent simulation, see rlSimulationOptions and sim.

Input Arguments
agents — Agents
agent object | array of reinforcement learning agent objects

Agents to train, specified as a reinforcement learning agent object, such as rlACAgent or
rlDDPGAgent, or as an array of such objects.

If env is a multi-agent environment created with rlSimulinkEnv, specify agents as an array. The
order of the agents in the array must match the agent order used to create env. Multi-agent
simulation is not supported for MATLAB environments.

Note train updates agents at each training episode. When training terminates, agents reflects
the state of each agent at the end of the final training episode. Therefore, the rewards obtained by
the final agents are not necessarily the highest achieved during the training process, due to
continuous exploration. To save agents during training, create an rlTrainingOptions object
specifying the SaveAgentCriteria and SaveAgentValue properties and pass it to train as a
trainOpts argument.

For more information about how to create and configure agents for reinforcement learning, see
“Reinforcement Learning Agents”.

2 Functions

2-138



env — Environment
reinforcement learning environment object

Environment in which the agents act, specified as one of the following kinds of reinforcement
learning environment object:

• A predefined MATLAB or Simulink environment created using rlPredefinedEnv. This kind of
environment does not support training multiple agents at the same time.

• A custom MATLAB environment you create with functions such as rlFunctionEnv or
rlCreateEnvTemplate. This kind of environment does not support training multiple agents at
the same time.

• A custom Simulink environment you create using rlSimulinkEnv. This kind of environment
supports training multiple agents at the same time.

For more information about creating and configuring environments, see:

• “Create MATLAB Reinforcement Learning Environments”
• “Create Simulink Reinforcement Learning Environments”

When env is a Simulink environment, calling train compiles and simulates the model associated
with the environment.

trainOpts — Training parameters and options
rlTrainingOptions object

Training parameters and options, specified as an rlTrainingOptions object. Use this argument to
specify such parameters and options as:

• Criteria for ending training
• Criteria for saving candidate agents
• How to display training progress
• Options for parallel computing

For details, see rlTrainingOptions.

Output Arguments
trainStats — Training episode data
structure

Training episode data, returned as a structure when training a single agent or an array of structures
when training multiple agents. Each structure element contains the following fields.

EpisodeIndex — Episode numbers
[1;2;…;N]

Episode numbers, returned as the column vector [1;2;…;N], where N is the number of episodes in
the training run. This vector is useful if you want to plot the evolution of other quantities from
episode to episode.

EpisodeReward — Reward for each episode
column vector
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Reward for each episode, returned in a column vector of length N. Each entry contains the reward for
the corresponding episode.

EpisodeSteps — Number of steps in each episode
column vector

Number of steps in each episode, returned in a column vector of length N. Each entry contains the
number of steps in the corresponding episode.

AverageReward — Average reward over the averaging window
column vector

Average reward over the averaging window specified in trainOpts, returned as a column vector of
length N. Each entry contains the average award computed at the end of the corresponding episode.

TotalAgentSteps — Total number of steps
column vector

Total number of agent steps in training, returned as a column vector of length N. Each entry contains
the cumulative sum of the entries in EpisodeSteps up to that point.

EpisodeQ0 — Critic estimate of long-term reward for each episode
column vector

Critic estimate of long-term reward using the current agent and the environment initial conditions,
returned as a column vector of length N. Each entry is the critic estimate (Q0) for the agent of the
corresponding episode. This field is present only for agents that have critics, such as rlDDPGAgent
and rlDQNAgent.

SimulationInfo — Information collected during simulation
structure | vector of Simulink.SimulationOutput objects

Information collected during the simulations performed for training, returned as:

• For training in MATLAB environments, a structure containing the field SimulationError. This
field is a column vector with one entry per episode. When the StopOnError option of
rlTrainingOptions is "off", each entry contains any errors that occurred during the
corresponding episode.

• For training in Simulink environments, a vector of Simulink.SimulationOutput objects
containing simulation data recorded during the corresponding episode. Recorded data for an
episode includes any signals and states that the model is configured to log, simulation metadata,
and any errors that occurred during the corresponding episode.

Tips
• train updates the agents as training progresses. To preserve the original agent parameters for

later use, save the agents to a MAT-file.
• By default, calling train opens the Reinforcement Learning Episode Manager, which lets you

visualize the progress of the training. The Episode Manager plot shows the reward for each
episode, a running average reward value, and the critic estimate Q0 (for agents that have critics).
The Episode Manager also displays various episode and training statistics. To turn off the
Reinforcement Learning Episode Manager, set the Plots option of trainOpts to "none".
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• If you use a predefined environment for which there is a visualization, you can use plot(env) to
visualize the environment. If you call plot(env) before training, then the visualization updates
during training to allow you to visualize the progress of each episode. (For custom environments,
you must implement your own plot method.)

• Training terminates when the conditions specified in trainOpts are satisfied. To terminate
training in progress, in the Reinforcement Learning Episode Manager, click Stop Training.
Because train updates the agent at each episode, you can resume training by calling
train(agent,env,trainOpts) again, without losing the trained parameters learned during the
first call to train.

• During training, you can save candidate agents that meet conditions you specify with trainOpts.
For instance, you can save any agent whose episode reward exceeds a certain value, even if the
overall condition for terminating training is not yet satisfied. train stores saved agents in a MAT-
file in the folder you specify with trainOpts. Saved agents can be useful, for instance, to allow
you to test candidate agents generated during a long-running training process. For details about
saving criteria and saving location, see rlTrainingOptions.

Algorithms
In general, train performs the following iterative steps:

1 Initialize agent.
2 For each episode:

a Reset the environment.
b Get the initial observation s0 from the environment.
c Compute the initial action a0 = μ(s0).
d Set the current action to the initial action (a←a0) and set the current observation to the initial

observation (s←s0).
e While the episode is not finished or terminated:

i Step the environment with action a to obtain the next observation s' and the reward r.
ii Learn from the experience set (s,a,r,s').
iii Compute the next action a' = μ(s').
iv Update the current action with the next action (a←a') and update the current

observation with the next observation (s←s').
v Break if the episode termination conditions defined in the environment are met.

3 If the training termination condition defined by trainOpts is met, terminate training.
Otherwise, begin the next episode.

The specifics of how train performs these computations depends on your configuration of the agent
and environment. For instance, resetting the environment at the start of each episode can include
randomizing initial state values, if you configure your environment to do so.

Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.
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To train in parallel, set the UseParallel and ParallelizationOptions options in the option set
trainOpts. Parallel training is not supported for multi-agent environments. For more information,
see rlTrainingOptions.

See Also
rlTrainingOptions | sim

Topics
“Train Reinforcement Learning Agents”

Introduced in R2019a
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validateEnvironment
Package: rl.env

Validate custom reinforcement learning environment

Syntax
validateEnvironment(env)

Description
validateEnvironment(env) validates a reinforcement learning environment. This function is
useful when:

• You are using a custom environment for which you supplied your own step and reset functions,
such as an environment created using rlCreateEnvTemplate.

• You are using an environment you created from a Simulink model using rlSimulinkEnv.

validateEnvironment resets the environment, generates an initial observation and action, and
simulates the environment for one or two steps (see “Algorithms” on page 2-145). If there are no
errors during these operations, validation is successful, and validateEnvironment returns no
result. If errors occur, these errors appear in the MATLAB command window. Use the errors to
determine what to change in your observation specification, action specification, custom functions, or
Simulink model.

Examples

Validate Simulink Environment

This example shows how to validate a Simulink environment.

Create and validate and environment for the rlwatertank model, which represents a control
system containing a reinforcement learning agent (For details about this model, see “Create Simulink
Environment and Train Agent”.)

open_system('rlwatertank')

Create observation and action specifications for the environment.

obsInfo = rlNumericSpec([3 1],...
    'LowerLimit',[-inf -inf 0  ]',...
    'UpperLimit',[ inf  inf inf]');
obsInfo.Name = 'observations';
obsInfo.Description = 'integrated error, error, and measured height';
numObservations = obsInfo.Dimension(1);

actInfo = rlNumericSpec([1 1]);
actInfo.Name = 'flow';
numActions = numel(actInfo);
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Create an environment from the model.

env = rlSimulinkEnv('rlwatertank','rlwatertank/RL Agent',obsInfo,actInfo);

Now you use validateEnvironment to check whether the model is configured correctly.

validateEnvironment(env)

Error using rl.env.SimulinkEnvWithAgent/validateEnvironment (line 187) 
Simulink environment validation requires an agent in the MATLAB base workspace 
or in a data dictionary linked to the model. Specify the agent in the Simulink model. 

validateEnvironment attempts to compile the model, initialize the environment and the agent,
and simulate the model. In this case, the RL Agent block is configured to use an agent called agent,
but no such variable exists in the MATLAB® workspace. Thus, the function returns an error
indicating the problem.

Create an appropriate agent for this system using the commands detailed in the “Create Simulink
Environment and Train Agent” example. In this case, load the agent from the
rlWaterTankDDPGAgent.mat file.

load rlWaterTankDDPGAgent

Now, run validateEnvironment again.

validateEnvironment(env)

Input Arguments
env — Environment to validate
environment object

Environment to validate, specified as a reinforcement learning environment object, such as:

• A custom MATLAB environment you create with rlCreateEnvTemplate. In this case,
validateEnvironment checks that the observations and actions generated during simulation of
the environment are consistent in size, data type, and value range with the observation
specification and action specification. It also checks that your custom step and reset functions
run without error. (When you create a custom environment using rlFunctionEnv, the software
runs validateEnvironment automatically.)

• A custom Simulink environment you create using rlSimulinkEnv. If you use a Simulink
environment, you must also have an agent defined and associated with the RL Agent block in the
model. For a Simulink model, validateEnvironment checks that the model compiles and runs
without error. The function does not dirty your model.

For more information about creating and configuring environments, see:

• “Create MATLAB Reinforcement Learning Environments”
• “Create Simulink Reinforcement Learning Environments”
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Algorithms
validateEnvironment works by running a brief simulation of the environment and making sure
that the generated signals match the observation and action specifications you provided when you
created the environment.

MATLAB Environments

For MATLAB environments, validation includes the following steps.

1 Reset the environment using the reset function associated with the environment.
2 Obtain the first observation and check whether it is consistent with the dimension, data type, and

range of values in the observation specification.
3 Generate a test action based on the dimension, data type, and range of values in the action

specification.
4 Simulate the environment for one step using the generated action and the step function

associated with the environment.
5 Obtain the new observation signal and check whether it is consistent with the dimension, data

type, and range of values in the observation specification.

If any of these operations generates an error, validateEnvironment returns the error. If
validateEnvironment returns no result, then validation is successful.

Simulink Environments

For Simulink environments, validation includes the following steps.

1 Reset the environment.
2 Simulate the model for two time steps.

If any of these operations generates an error, validateEnvironment returns the error. If
validateEnvironment returns no result, then validation is successful.

validateEnvironment performs these steps without dirtying the model, and leaves all model
parameters in the state they were in when you called the function.

See Also
rlCreateEnvTemplate | rlSimulinkEnv | rlFunctionEnv

Topics
“Create Simulink Environment and Train Agent”
“Create Custom MATLAB Environment from Template”

Introduced in R2019a
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quadraticLayer
Quadratic layer for actor or critic network

Description
A quadratic layer takes an input vector and outputs a vector of quadratic monomials constructed from
the input elements. This layer is useful when you need a layer whose output is some quadratic
function of its inputs. For example, to recreate the structure of quadratic value functions such as
those used in LQR controller design.

For example, consider an input vector U = [u1 u2 u3]. For this input, a quadratic layer gives the
output Y = [u1*u1 u1*u2 u2*u2 u1*u3 u2*u3 u3*u3]. For an example that uses a
QuadraticLayer, see “Train DDPG Agent to Control Double Integrator System”.

Note The QuadraticLayer layer does not support inputs coming directly or indirectly from a
featureInputLayer or sequenceInputLayer.

The parameters of a QuadraticLayer object are not learnable.

Creation

Syntax
qLayer = quadraticLayer
qLayer = quadraticLayer(Name,Value)

Description

qLayer = quadraticLayer creates a quadratic layer with default property values.

qLayer = quadraticLayer(Name,Value) sets properties on page 3-2 using name-value pairs.
For example, quadraticLayer('Name','quadlayer') creates a quadratic layer and assigns the
name 'quadlayer'.

Properties
Name — Name of layer
'quadratic' (default) | character vector

Name of layer, specified as a character vector. To include a layer in a layer graph, you must specify a
nonempty unique layer name. If you train a series network with this layer and Name is set to '', then
the software automatically assigns a name to the layer at training time.

Description — Description of layer
'quadratic layer' (default) | character vector
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This property is read-only.

Description of layer, specified as a character vector. When you create the quadratic layer, you can use
this property to give it a description that helps you identify its purpose.

Examples

Create Quadratic Layer

Create a quadratic layer that converts an input vector U into a vector of quadratic monomials
constructed from binary combinations of the elements of U.

qLayer = quadraticLayer

qLayer = 
  QuadraticLayer with properties:

    Name: 'quadratic'

   Learnable Parameters
    No properties.

   State Parameters
    No properties.

  Show all properties

Confirm that the layer produces the expected output. For instance, for U = [u1 u2 u3], the
expected output is [u1*u1 u1*u2 u2*u2 u1*u3 u2*u3 u3*u3].

predict(qLayer,[1 2 3])

ans = 1×3

     1     4     9

You can incorporate qLayer into an actor network or critic network for reinforcement learning.

See Also
scalingLayer | softplusLayer

Topics
“Train DDPG Agent to Control Double Integrator System”
“Create Policy and Value Function Representations”

Introduced in R2019a
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rlACAgent
Actor-critic reinforcement learning agent

Description
Actor-critic (AC) agents implement actor-critic algorithms such as A2C and A3C, which are model-
free, online, on-policy reinforcement learning methods. The actor-critic agent optimizes the policy
(actor) directly and uses a critic to estimate the return or future rewards. The action space can be
either discrete or continuous.

For more information, see “Actor-Critic Agents”. For more information on the different types of
reinforcement learning agents, see “Reinforcement Learning Agents”.

Creation

Syntax
agent = rlACAgent(observationInfo,actionInfo)
agent = rlACAgent(observationInfo,actionInfo,initOpts)

agent = rlACAgent(actor,critic)

agent = rlACAgent( ___ ,agentOptions)

Description
Create Agent from Observation and Action Specifications

agent = rlACAgent(observationInfo,actionInfo) creates an actor-critic agent for an
environment with the given observation and action specifications, using default initialization options.
The actor and critic representations in the agent use default deep neural networks built from the
observation specification observationInfo and the action specification actionInfo.

agent = rlACAgent(observationInfo,actionInfo,initOpts) creates an actor-critic agent
for an environment with the given observation and action specifications. The agent uses default
networks in which each hidden fully connected layer has the number of units specified in the
initOpts object. Actor-critic agents do not support recurrent neural networks. For more information
on the initialization options, see rlAgentInitializationOptions.

Create Agent from Actor and Critic Representations

agent = rlACAgent(actor,critic) creates an actor-critic agent with the specified actor and
critic, using the default options for the agent.

Specify Agent Options

agent = rlACAgent( ___ ,agentOptions) creates an actor-critic agent and sets the
AgentOptions property to the agentOptions input argument. Use this syntax after any of the input
arguments in the previous syntaxes.
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Input Arguments

observationInfo — Observation specifications
specification object | array of specification objects

Observation specifications, specified as a reinforcement learning specification object or an array of
specification objects defining properties such as dimensions, data type, and names of the observation
signals.

You can extract observationInfo from an existing environment or agent using
getObservationInfo. You can also construct the specifications manually using rlFiniteSetSpec
or rlNumericSpec.

actionInfo — Action specification
specification object

Action specifications, specified as a reinforcement learning specification object defining properties
such as dimensions, data type, and names of the action signals.

For a discrete action space, you must specify actionInfo as an rlFiniteSetSpec object.

For a continuous action space, you must specify actionInfo as an rlNumericSpec object.

You can extract actionInfo from an existing environment or agent using getActionInfo. You can
also construct the specification manually using rlFiniteSetSpec or rlNumericSpec.

initOpts — Agent initialization options
rlAgentInitializationOptions object

Agent initialization options, specified as an rlAgentInitializationOptions object. Actor-critic
agents do not support recurrent neural networks.

actor — Actor network representation
rlStochasticActorRepresentation object

Actor network representation for the policy, specified as an rlStochasticActorRepresentation
object. For more information on creating actor representations, see “Create Policy and Value
Function Representations”.

critic — Critic network representation
rlValueRepresentation object

Critic network representation for estimating the discounted long-term reward, specified as an
rlValueRepresentation object. For more information on creating critic representations, see
“Create Policy and Value Function Representations”.

Properties
AgentOptions — Agent options
rlACAgentOptions object

Agent options, specified as an rlACAgentOptions object.
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Object Functions
train Train reinforcement learning agents within a specified environment
sim Simulate trained reinforcement learning agents within specified

environment
getAction Obtain action from agent or actor representation given environment

observations
getActor Get actor representation from reinforcement learning agent
setActor Set actor representation of reinforcement learning agent
getCritic Get critic representation from reinforcement learning agent
setCritic Set critic representation of reinforcement learning agent
generatePolicyFunction Create function that evaluates trained policy of reinforcement learning

agent

Examples

Create Discrete Actor-Critic Agent from Observation and Action Specifications

Create an environment with a discrete action space, and obtain its observation and action
specifications. For this example, load the environment used in the example “Create Agent Using Deep
Network Designer and Train Using Image Observations”. This environment has two observations: a
50-by-50 grayscale image and a scalar (the angular velocity of the pendulum). The action is a scalar
with five possible elements (a torque of either -2, -1, 0, 1, or 2 Nm applied to a swinging pole).

% load predefined environment
env = rlPredefinedEnv("SimplePendulumWithImage-Discrete");

% obtain observation and action specifications
obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

The agent creation function initializes the actor and critic networks randomly. You can ensure
reproducibility by fixing the seed of the random generator. To do so, uncomment the following line.

% rng(0)

Create an actor-critic agent from the environment observation and action specifications.

agent = rlACAgent(obsInfo,actInfo);

To check your agent, use getAction to return the action from a random observation.

getAction(agent,{rand(obsInfo(1).Dimension),rand(obsInfo(2).Dimension)})

ans = 1x1 cell array
    {[-2]}

You can now test and train the agent within the environment.

Create Continuous Actor-Critic Agent Using Initialization Options

Create an environment with a continuous action space and obtain its observation and action
specifications. For this example, load the environment used in the example “Train DDPG Agent to
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Swing Up and Balance Pendulum with Image Observation”. This environment has two observations: a
50-by-50 grayscale image and a scalar (the angular velocity of the pendulum). The action is a scalar
representing a torque ranging continuously from -2 to 2 Nm.

% load predefined environment
env = rlPredefinedEnv("SimplePendulumWithImage-Continuous");

% obtain observation and action specifications
obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

Create an agent initialization option object, specifying that each hidden fully connected layer in the
network must have 128 neurons (instead of the default number, 256). Actor-critic agents do not
support recurrent networks, so setting the UseRNN option to true generates an error when the agent
is created.

initOpts = rlAgentInitializationOptions('NumHiddenUnit',128);

The agent creation function initializes the actor and critic networks randomly. You can ensure
reproducibility by fixing the seed of the random generator. To do so, uncomment the following line.

% rng(0)

Create an actor-critic agent from the environment observation and action specifications.

agent = rlACAgent(obsInfo,actInfo,initOpts);

Reduce the critic learning rate to 1e-3.

critic = getCritic(agent);
critic.Options.LearnRate = 1e-3;
agent  = setCritic(agent,critic);

Extract the deep neural networks from both the agent actor and critic.

actorNet = getModel(getActor(agent));
criticNet = getModel(getCritic(agent));

Display the layers of the critic network, and verify that each hidden fully connected layer has 128
neurons

criticNet.Layers

ans = 
  11x1 Layer array with layers:

     1   'input_1'        Image Input       50x50x1 images
     2   'conv_1'         Convolution       64 3x3x1 convolutions with stride [1  1] and padding [0  0  0  0]
     3   'relu_input_1'   ReLU              ReLU
     4   'fc_1'           Fully Connected   128 fully connected layer
     5   'input_2'        Feature Input     1 features
     6   'fc_2'           Fully Connected   128 fully connected layer
     7   'concat'         Concatenation     Concatenation of 2 inputs along dimension 1
     8   'relu_body'      ReLU              ReLU
     9   'fc_body'        Fully Connected   128 fully connected layer
    10   'body_output'    ReLU              ReLU
    11   'output'         Fully Connected   1 fully connected layer

Plot actor and critic networks
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plot(layerGraph(actorNet))

plot(layerGraph(criticNet))
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To check your agent, use getAction to return the action from a random observation.

getAction(agent,{rand(obsInfo(1).Dimension),rand(obsInfo(2).Dimension)})

ans = 1x1 cell array
    {[0.9228]}

You can now test and train the agent within the environment.

Create Discrete Actor-Critic Agent from Actor and Critic

Create an environment with a discrete action space and obtain its observation and action
specifications. For this example, load the environment used in the example “Train DQN Agent to
Balance Cart-Pole System”. This environment has a four-dimensional observation vector (cart position
and velocity, pole angle, and pole angle derivative), and a scalar action with two possible elements (a
force of either -10 or +10 N applied on the cart).

% load predefined environment
env = rlPredefinedEnv("CartPole-Discrete");

% obtain observation specifications
obsInfo = getObservationInfo(env)

obsInfo = 
  rlNumericSpec with properties:
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     LowerLimit: -Inf
     UpperLimit: Inf
           Name: "CartPole States"
    Description: "x, dx, theta, dtheta"
      Dimension: [4 1]
       DataType: "double"

% obtain action specifications
actInfo = getActionInfo(env)

actInfo = 
  rlFiniteSetSpec with properties:

       Elements: [-10 10]
           Name: "CartPole Action"
    Description: [0x0 string]
      Dimension: [1 1]
       DataType: "double"

The agent creation function initializes the actor and critic networks randomly. You can ensure
reproducibility by fixing the seed of the random generator. To do so, uncomment the following line.

% rng(0)

Create a critic representation.

% create the network to use as the approximator in the critic
% must have a 4-dimensional input (4 observations) and a scalar output (value)
criticNetwork = [
    imageInputLayer([4 1 1],'Normalization','none','Name','state')
    fullyConnectedLayer(1,'Name','CriticFC')];

% set options for the critic
criticOpts = rlRepresentationOptions('LearnRate',8e-3,'GradientThreshold',1);

% create the critic (actor-critic agents use a value function representation)
critic = rlValueRepresentation(criticNetwork,obsInfo,'Observation',{'state'},criticOpts);

Create an actor representation.

% create the network to use as approximator in the actor
% must have a 4-dimensional input and a 2-dimensional output (action)
actorNetwork = [
    imageInputLayer([4 1 1],'Normalization','none','Name','state')
    fullyConnectedLayer(2,'Name','action')];

% set options for the actor
actorOpts = rlRepresentationOptions('LearnRate',8e-3,'GradientThreshold',1);

% create the actor (actor-critic agents use a stochastic actor representation)
actor = rlStochasticActorRepresentation(actorNetwork,obsInfo,actInfo,...
    'Observation',{'state'},actorOpts);

Specify agent options, and create an AC agent using the actor, the critic, and the agent option object.
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agentOpts = rlACAgentOptions('NumStepsToLookAhead',32,'DiscountFactor',0.99);
agent = rlACAgent(actor,critic,agentOpts)

agent = 
  rlACAgent with properties:

    AgentOptions: [1x1 rl.option.rlACAgentOptions]

To check your agent, use getAction to return the action from a random observation.

getAction(agent,{rand(4,1)})

ans = 1x1 cell array
    {[-10]}

You can now test and train the agent within the environment.

Create Continuous Actor-Critic Agent from Actor and Critic

Create an environment with a continuous action space, and obtain its observation and action
specifications. For this example, load the double integrator continuous action space environment used
in the example “Train DDPG Agent to Control Double Integrator System”.

% load predefined environment
env = rlPredefinedEnv("DoubleIntegrator-Continuous");

% obtain observation specifications
obsInfo = getObservationInfo(env)

obsInfo = 
  rlNumericSpec with properties:

     LowerLimit: -Inf
     UpperLimit: Inf
           Name: "states"
    Description: "x, dx"
      Dimension: [2 1]
       DataType: "double"

% obtain action specifications
actInfo = getActionInfo(env)

actInfo = 
  rlNumericSpec with properties:

     LowerLimit: -Inf
     UpperLimit: Inf
           Name: "force"
    Description: [0x0 string]
      Dimension: [1 1]
       DataType: "double"
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In this example, the action is a scalar input representing a force ranging from -2 to 2 Newton, so it is
a good idea to set the upper and lower limit of the action signal accordingly. This must be done when
the network representation for the actor has an nonlinear output layer than needs to be scaled
accordingly to produce an output in the desired range.

% make sure action space upper and lower limits are finite
actInfo.LowerLimit=-2;
actInfo.UpperLimit=2;

The actor and critic networks are initialized randomly. You can ensure reproducibility by fixing the
seed of the random generator. To do that, uncomment the following line.

% rng(0)

Create a critic representation. Actor-critic agents use a rlValueRepresentation for the critic. For
continuous observation spaces, you can use either a deep neural network or a custom basis
representation. For this example, create a deep neural network as the underlying approximator.

% create the network to be used as approximator in the critic
% it must take the observation signal as input and produce a scalar value
criticNet = [
    imageInputLayer([obsInfo.Dimension 1],'Normalization','none','Name','state')
    fullyConnectedLayer(10,'Name', 'fc_in')
    reluLayer('Name', 'relu')
    fullyConnectedLayer(1,'Name','out')];

% set some training options for the critic
criticOpts = rlRepresentationOptions('LearnRate',8e-3,'GradientThreshold',1);

% create the critic representation from the network
critic = rlValueRepresentation(criticNet,obsInfo,'Observation',{'state'},criticOpts);

Actor-critic agents use a rlStochasticActorRepresentation. For stochastic actors operating in
continuous action spaces, you can use only a deep neural network as the underlying approximator.

The observation input (here called myobs) must accept a two-dimensional vector, as specified in
obsInfo. The output (here called myact) must also be a two-dimensional vector (twice the number
of dimensions specified in actInfo). The elements of the output vector represent, in sequence, all
the means and all the standard deviations of every action (in this example, there is only one mean
value and one standard deviation).

The fact that standard deviations must be nonnegative while mean values must fall within the output
range means that the network must have two separate paths. The first path is for the mean values,
and any output nonlinearity must be scaled so that it can produce outputs in the output range. The
second path is for the standard deviations, and you must use a softplus or ReLU layer to enforce
nonnegativity.

% input path layers (2 by 1 input and a 1 by 1 output)
inPath = [ 
    imageInputLayer([obsInfo.Dimension 1], 'Normalization','none','Name','state')
    fullyConnectedLayer(10,'Name', 'ip_fc')  % 10 by 1 output
    reluLayer('Name', 'ip_relu')             % nonlinearity
    fullyConnectedLayer(1,'Name','ip_out') ];% 1 by 1 output

% path layers for mean value (1 by 1 input and 1 by 1 output)
% use scalingLayer to scale the range
meanPath = [
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    fullyConnectedLayer(15,'Name', 'mp_fc1') % 15 by 1 output
    reluLayer('Name', 'mp_relu')             % nonlinearity
    fullyConnectedLayer(1,'Name','mp_fc2');  % 1 by 1 output
    tanhLayer('Name','tanh');                % output range: (-1,1)
    scalingLayer('Name','mp_out','Scale',actInfo.UpperLimit) ]; % output range: (-2N,2N)

% path layers for standard deviation (1 by 1 input and output)
% use softplus layer to make output non negative
sdevPath = [
    fullyConnectedLayer(15,'Name', 'vp_fc1') % 15 by 1 output
    reluLayer('Name', 'vp_relu')             % nonlinearity
    fullyConnectedLayer(1,'Name','vp_fc2');  % 1 by 1 output
    softplusLayer('Name', 'vp_out') ];       % output range: (0,+Inf)

% concatenate two inputs (along dimension #3) to form a single (2 by 1) output layer
outLayer = concatenationLayer(3,2,'Name','mean&sdev');

% add layers to layerGraph network object
actorNet = layerGraph(inPath);
actorNet = addLayers(actorNet,meanPath);
actorNet = addLayers(actorNet,sdevPath);
actorNet = addLayers(actorNet,outLayer);

% connect layers: the mean value path output must be connected to the first input of the concatenation layer
actorNet = connectLayers(actorNet,'ip_out','mp_fc1/in');   % connect output of inPath to meanPath input
actorNet = connectLayers(actorNet,'ip_out','vp_fc1/in');   % connect output of inPath to sdevPath input
actorNet = connectLayers(actorNet,'mp_out','mean&sdev/in1');% connect output of meanPath to mean&sdev input #1
actorNet = connectLayers(actorNet,'vp_out','mean&sdev/in2');% connect output of sdevPath to mean&sdev input #2

% plot network 
plot(actorNet)
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Specify some options for the actor and create the stochastic actor representation using the deep
neural network actorNet.

% set some training options for the actor
actorOpts = rlRepresentationOptions('LearnRate',8e-3,'GradientThreshold',1);

% create the actor using the network
actor = rlStochasticActorRepresentation(actorNet,obsInfo,actInfo,...
    'Observation',{'state'},actorOpts);

Specify agent options, and create an AC agent using actor, critic, and agent options.

agentOpts = rlACAgentOptions('NumStepsToLookAhead',32,'DiscountFactor',0.99);
agent = rlACAgent(actor,critic,agentOpts)

agent = 
  rlACAgent with properties:

    AgentOptions: [1x1 rl.option.rlACAgentOptions]

To check your agent, use getAction to return the action from a random observation.

getAction(agent,{rand(2,1)})

ans = 1x1 cell array
    {[0.6668]}
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You can now test and train the agent within the environment.

Create a Discrete Actor-Critic Agent with Recurrent Neural Networks

For this example load the predefined environment used for the “Train DQN Agent to Balance Cart-
Pole System” example.

env = rlPredefinedEnv("CartPole-Discrete");

Get observation and action information. This environment has a four-dimensional observation vector
(cart position and velocity, pole angle, and pole angle derivative), and a scalar action with two
possible elements (a force of either -10 or +10 N applied on the cart).

obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

The agent creation function initializes the actor and critic networks randomly. You can ensure
reproducibility by fixing the seed of the random generator. To do so, uncomment the following line.

% rng(0)

To create a recurrent neural network for the critic, use a sequenceInputLayer as the input layer
and include an lstmLayer as one of the other network layers.

criticNetwork = [
    sequenceInputLayer(obsInfo.Dimension(1),'Normalization','none','Name','myobs')
    lstmLayer(8,'OutputMode','sequence','Name','lstm')
    fullyConnectedLayer(1,'Name','CriticFC')];

Set options for the critic and create the critic representation (actor-critic agents use a value function
representation).

criticOpts = rlRepresentationOptions('LearnRate',8e-3,'GradientThreshold',1);
critic = rlValueRepresentation(criticNetwork,obsInfo,'Observation',{'myobs'},criticOpts);

Create a neural network for the actor. Since the critic has a recurrent network, the actor must have a
recurrent network too.

actorNetwork = [
    sequenceInputLayer(obsInfo.Dimension(1),'Normalization','none','Name','myobs')
    lstmLayer(8,'OutputMode','sequence','Name','lstm')
    fullyConnectedLayer(numel(actInfo.Elements),'Name','action')];

Set options for the critic and create the actor representation

actorOpts = rlRepresentationOptions('LearnRate',8e-3,'GradientThreshold',1);
actor = rlStochasticActorRepresentation(actorNetwork,obsInfo,actInfo,...
    'Observation',{'myobs'},actorOpts);

Specify agent options, and create an AC agent using the actor, the critic, and the agent option object.
Since the agent uses recurrent neural networks, NumStepsToLookAhead is treated as the training
trajectory length.

agentOpts = rlACAgentOptions('NumStepsToLookAhead',32,'DiscountFactor',0.99);
agent = rlACAgent(actor,critic,agentOpts);
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To check your agent, use getAction to return the action from a random observation.

getAction(agent,{rand(obsInfo.Dimension)})

ans = 1×1 cell array
    {[-10]}

You can now test and train the agent within the environment.

Tips
• For continuous action spaces, the rlACAgent object does not enforce the constraints set by the

action specification, so you must enforce action space constraints within the environment.

See Also
rlAgentInitializationOptions | rlACAgentOptions |
rlStochasticActorRepresentation | rlValueRepresentation | Deep Network Designer

Topics
“Actor-Critic Agents”
“Reinforcement Learning Agents”
“Train Reinforcement Learning Agents”

Introduced in R2019a
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rlACAgentOptions
Options for AC agent

Description
Use an rlACAgentOptions object to specify options for creating actor-critic (AC) agents. To create
an actor-critic agent, use rlACAgent

For more information see “Actor-Critic Agents”.

For more information on the different types of reinforcement learning agents, see “Reinforcement
Learning Agents”.

Creation
Syntax
opt = rlACAgentOptions
opt = rlACAgentOptions(Name,Value)

Description

opt = rlACAgentOptions creates a default option set for an AC agent. You can modify the object
properties using dot notation.

opt = rlACAgentOptions(Name,Value) sets option properties on page 3-17 using name-value
pairs. For example, rlDQNAgentOptions('DiscountFactor',0.95) creates an option set with a
discount factor of 0.95. You can specify multiple name-value pairs. Enclose each property name in
quotes.

Properties
NumStepsToLookAhead — Number of steps ahead
32 (default) | positive integer

Number of steps the agent interacts with the environment before learning from its experience,
specified as a positive integer. When the agent uses a recurrent neural network,
NumStepsToLookAhead is treated as the training trajectory length.

EntropyLossWeight — Entropy loss weight
0 (default) | scalar value between 0 and 1

Entropy loss weight, specified as a scalar value between 0 and 1. A higher entropy loss weight value
promotes agent exploration by applying a penalty for being too certain about which action to take.
Doing so can help the agent move out of local optima.

When gradients are computed during training, an additional gradient component is computed for
minimizing this loss function.
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UseDeterministicExploitation — Use action with maximum likelihood
false (default) | true

Option to return the action with maximum likelihood for simulation and policy generation, specified
as a logical value. When UseDeterministicExploitation is set to true, the action with
maximum likelihood is always used in sim and generatePolicyFunction, which causes the agent
to behave deterministically.

When UseDeterministicExploitation is set to false, the agent samples actions from
probability distributions, which causes the agent to behave stochastically.

SampleTime — Sample time of agent
1 (default) | positive scalar

Sample time of agent, specified as a positive scalar.

Within a Simulink environment, the agent gets executed every SampleTime seconds of simulation
time.

Within a MATLAB environment, the agent gets executed every time the environment advances.
However, SampleTime is the time interval between consecutive elements in the output experience
returned by sim or train.

DiscountFactor — Discount factor
0.99 (default) | positive scalar less than or equal to 1

Discount factor applied to future rewards during training, specified as a positive scalar less than or
equal to 1.

Object Functions
rlACAgent Actor-critic reinforcement learning agent

Examples

Create AC Agent Options Object

Create an AC agent options object, specifying the discount factor.

opt = rlACAgentOptions('DiscountFactor',0.95)

opt = 
  rlACAgentOptions with properties:

             NumStepsToLookAhead: 32
               EntropyLossWeight: 0
    UseDeterministicExploitation: 0
                      SampleTime: 1
                  DiscountFactor: 0.9500

You can modify options using dot notation. For example, set the agent sample time to 0.5.

opt.SampleTime = 0.5;
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Compatibility Considerations
Default value for NumStepsToLookAhead changed to 32
Behavior change in future release

A value of 32 for this property should work better than 1 for most environments. If you nave MATLAB
R2020b or a later version and you want to reproduce how rlACAgent behaved on versions prior to
R2020b, set this value to 1.

See Also
Topics
“Actor-Critic Agents”

Introduced in R2019a
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rlAgentInitializationOptions
Options for initializing reinforcement learning agents

Description
Use the rlAgentInitializationOptions object to specify initialization options for an agent. To
create an agent, use the specific agent creation function, such as rlACAgent.

Creation

Syntax
initOpts = rlAgentInitializationOptions
initOpts = rlAgentInitializationOptions(Name,Value)

Description

initOpts = rlAgentInitializationOptions returns a default options object for initializing a
reinforcement learning agent that supports default networks. Use the initialization options to specify
agent initialization parameters, such as the number of units for each hidden layer of the agent
networks and whether to use a recurrent neural network.

initOpts = rlAgentInitializationOptions(Name,Value) creates an initialization options
object and sets its properties on page 3-20 by using one or more name-value pair arguments.

Properties
NumHiddenUnit — Number of units in each hidden fully connected layer
256 (default) | positive integer

Number of units in each hidden fully connected layer of the agent networks, except for the fully
connected layer just before the network output, specified as a positive integer. The value you set also
applies to any LSTM layers.
Example: 'NumHiddenUnit',64

UseRNN — Flag to use recurrent neural network
false (default) | true

Flag to use recurrent neural network, specified as a logical.

If you set UseRNN to true, during agent creation the software inserts a recurrent LSTM layer with
the output mode set to sequence in the output path of the agent networks. Policy gradient and actor-
critic agents do not support recurrent neural networks. For more information on LSTM, see “Long
Short-Term Memory Networks”.
Example: 'UseRNN',true
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Object Functions
rlACAgent Actor-critic reinforcement learning agent
rlPGAgent Policy gradient reinforcement learning agent
rlDDPGAgent Deep deterministic policy gradient reinforcement learning agent
rlDQNAgent Deep Q-network reinforcement learning agent
rlPPOAgent Proximal policy optimization reinforcement learning agent
rlTD3Agent Twin-delayed deep deterministic policy gradient reinforcement learning agent
rlSACAgent Soft actor-critic reinforcement learning agent
rlTRPOAgent Trust region policy optimization reinforcement learning agent

Examples

Create Agent Initialization Options Object

Create an agent initialization options object, specifying the number of hidden neurons and use of a
recurrent neural network.

initOpts = rlAgentInitializationOptions('NumHiddenUnit',64,'UseRNN',true)

initOpts = 
  rlAgentInitializationOptions with properties:

    NumHiddenUnit: 64
           UseRNN: 1

You can modify the options using dot notation. For example, set the agent sample time to 0.5.

initOpts.NumHiddenUnit = 128

initOpts = 
  rlAgentInitializationOptions with properties:

    NumHiddenUnit: 128
           UseRNN: 1

See Also
getActionInfo | getObservationInfo

Topics
“Reinforcement Learning Agents”

Introduced in R2020b
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rlDDPGAgent
Deep deterministic policy gradient reinforcement learning agent

Description
The deep deterministic policy gradient (DDPG) algorithm is an actor-critic, model-free, online, off-
policy reinforcement learning method which computes an optimal policy that maximizes the long-
term reward. The action space can only be continuous.

For more information, see “Deep Deterministic Policy Gradient Agents”. For more information on the
different types of reinforcement learning agents, see “Reinforcement Learning Agents”.

Creation

Syntax
agent = rlDDPGAgent(observationInfo,actionInfo)
agent = rlDDPGAgent(observationInfo,actionInfo,initOpts)

agent = rlDDPGAgent(actor,critic,agentOptions)

agent = rlDDPGAgent( ___ ,agentOptions)

Description
Create Agent from Observation and Action Specifications

agent = rlDDPGAgent(observationInfo,actionInfo) creates a deep deterministic policy
gradient agent for an environment with the given observation and action specifications, using default
initialization options. The actor and critic representations in the agent use default deep neural
networks built from the observation specification observationInfo and the action specification
actionInfo.

agent = rlDDPGAgent(observationInfo,actionInfo,initOpts) creates a deep
deterministic policy gradient agent for an environment with the given observation and action
specifications. The agent uses default networks configured using options specified in the initOpts
object. For more information on the initialization options, see rlAgentInitializationOptions.

Create Agent from Actor and Critic Representations

agent = rlDDPGAgent(actor,critic,agentOptions) creates a DDPG agent with the specified
actor and critic networks, using default DDPG agent options.

Specify Agent Options

agent = rlDDPGAgent( ___ ,agentOptions) creates a DDPG agent and sets the AgentOptions
property to the agentOptions input argument. Use this syntax after any of the input arguments in
the previous syntaxes.

3 Objects

3-22



Input Arguments

observationInfo — Observation specifications
specification object | array of specification objects

Observation specifications, specified as a reinforcement learning specification object or an array of
specification objects defining properties such as dimensions, data type, and names of the observation
signals.

You can extract observationInfo from an existing environment or agent using
getObservationInfo. You can also construct the specifications manually using rlFiniteSetSpec
or rlNumericSpec.

actionInfo — Action specification
specification object

Action specifications, specified as a reinforcement learning specification object defining properties
such as dimensions, data type, and names of the action signals.

Since a DDPG agent operates in a continuous action space, you must specify actionInfo as an
rlNumericSpec object.

You can extract actionInfo from an existing environment or agent using getActionInfo. You can
also construct the specification manually using rlNumericSpec.

initOpts — Agent initialization options
rlAgentInitializationOptions object

Agent initialization options, specified as an rlAgentInitializationOptions object.

actor — Actor network representation
rlDeterministicActorRepresentation object

Actor network representation, specified as an rlDeterministicActorRepresentation. For more
information on creating actor representations, see “Create Policy and Value Function
Representations”.

critic — Critic network representation
rlQValueRepesentation object

Critic network representation, specified as an rlQValueRepresentation object. For more
information on creating critic representations, see “Create Policy and Value Function
Representations”.

Properties
AgentOptions — Agent options
rlDDPGAgentOptions object

Agent options, specified as an rlDDPGAgentOptions object.

If you create a DDPG agent with default actor and critic representations that use recurrent neural
networks, the default value of AgentOptions.SequenceLength is 32.

 rlDDPGAgent

3-23



ExperienceBuffer — Experience buffer
ExperienceBuffer object

Experience buffer, specified as an ExperienceBuffer object. During training the agent stores each
of its experiences (S,A,R,S') in a buffer. Here:

• S is the current observation of the environment.
• A is the action taken by the agent.
• R is the reward for taking action A.
• S' is the next observation after taking action A.

For more information on how the agent samples experience from the buffer during training, see
“Deep Deterministic Policy Gradient Agents”.

Object Functions
train Train reinforcement learning agents within a specified environment
sim Simulate trained reinforcement learning agents within specified

environment
getAction Obtain action from agent or actor representation given environment

observations
getActor Get actor representation from reinforcement learning agent
setActor Set actor representation of reinforcement learning agent
getCritic Get critic representation from reinforcement learning agent
setCritic Set critic representation of reinforcement learning agent
generatePolicyFunction Create function that evaluates trained policy of reinforcement learning

agent

Examples

Create DDPG Agent from Observation and Action Specifications

Create an environment with a continuous action space, and obtain its observation and action
specifications. For this example, load the environment used in the example “Train DDPG Agent to
Control Double Integrator System”. The observation from the environment is a vector containing the
position and velocity of a mass. The action is a scalar representing a force, applied to the mass,
ranging continuously from -2 to 2 Newton.

% load predefined environment
env = rlPredefinedEnv("DoubleIntegrator-Continuous");

% obtain observation and action specifications
obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

The agent creation function initializes the actor and critic networks randomly. You can ensure
reproducibility by fixing the seed of the random generator. To do so, uncomment the following line.

% rng(0)

Create a policy gradient agent from the environment observation and action specifications.

agent = rlDDPGAgent(obsInfo,actInfo);
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To check your agent, use getAction to return the action from a random observation.

getAction(agent,{rand(obsInfo(1).Dimension)})

ans = 1x1 cell array
    {[0.0182]}

You can now test and train the agent within the environment.

Create DDPG Agent Using Initialization Options

Create an environment with a continuous action space and obtain its observation and action
specifications. For this example, load the environment used in the example “Train DDPG Agent to
Swing Up and Balance Pendulum with Image Observation”. This environment has two observations: a
50-by-50 grayscale image and a scalar (the angular velocity of the pendulum). The action is a scalar
representing a torque ranging continuously from -2 to 2 Nm.

% load predefined environment
env = rlPredefinedEnv("SimplePendulumWithImage-Continuous");

% obtain observation and action specifications
obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

Create an agent initialization option object, specifying that each hidden fully connected layer in the
network must have 128 neurons (instead of the default number, 256).

initOpts = rlAgentInitializationOptions('NumHiddenUnit',128);

The agent creation function initializes the actor and critic networks randomly. You can ensure
reproducibility by fixing the seed of the random generator. To do so, uncomment the following line.

% rng(0)

Create a DDPG agent from the environment observation and action specifications.

agent = rlDDPGAgent(obsInfo,actInfo,initOpts);

Reduce the critic learning rate to 1e-3.

critic = getCritic(agent);
critic.Options.LearnRate = 1e-3;
agent  = setCritic(agent,critic);

Extract the deep neural networks from both the agent actor and critic.

actorNet = getModel(getActor(agent));
criticNet = getModel(getCritic(agent));

Display the layers of the critic network, and verify that each hidden fully connected layer has 128
neurons

criticNet.Layers

ans = 
  13x1 Layer array with layers:
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     1   'input_1'        Image Input       50x50x1 images
     2   'conv_1'         Convolution       64 3x3x1 convolutions with stride [1  1] and padding [0  0  0  0]
     3   'relu_input_1'   ReLU              ReLU
     4   'fc_1'           Fully Connected   128 fully connected layer
     5   'input_2'        Feature Input     1 features
     6   'fc_2'           Fully Connected   128 fully connected layer
     7   'input_3'        Feature Input     1 features
     8   'fc_3'           Fully Connected   128 fully connected layer
     9   'concat'         Concatenation     Concatenation of 3 inputs along dimension 1
    10   'relu_body'      ReLU              ReLU
    11   'fc_body'        Fully Connected   128 fully connected layer
    12   'body_output'    ReLU              ReLU
    13   'output'         Fully Connected   1 fully connected layer

Plot actor and critic networks

plot(layerGraph(actorNet))

plot(layerGraph(criticNet))
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To check your agent, use getAction to return the action from a random observation.

getAction(agent,{rand(obsInfo(1).Dimension),rand(obsInfo(2).Dimension)})

ans = 1x1 cell array
    {[-0.0364]}

You can now test and train the agent within the environment.

Create DDPG Agent from Actor and Critic

Create an environment with a continuous action space and obtain its observation and action
specifications. For this example, load the environment used in the example “Train DDPG Agent to
Control Double Integrator System”. The observation from the environment is a vector containing the
position and velocity of a mass. The action is a scalar representing a force ranging continuously from
-2 to 2 Newton.

env = rlPredefinedEnv("DoubleIntegrator-Continuous");
obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

Create a critic representation.

% create a network to be used as underlying critic approximator
statePath = imageInputLayer([obsInfo.Dimension(1) 1 1],'Normalization','none','Name','state');
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actionPath = imageInputLayer([numel(actInfo) 1 1],'Normalization','none','Name','action');
commonPath = [concatenationLayer(1,2,'Name','concat')
             quadraticLayer('Name','quadratic')
             fullyConnectedLayer(1,'Name','StateValue','BiasLearnRateFactor', 0, 'Bias', 0)];
criticNetwork = layerGraph(statePath);
criticNetwork = addLayers(criticNetwork, actionPath);
criticNetwork = addLayers(criticNetwork, commonPath);
criticNetwork = connectLayers(criticNetwork,'state','concat/in1');
criticNetwork = connectLayers(criticNetwork,'action','concat/in2');

% set some options for the critic
criticOpts = rlRepresentationOptions('LearnRate',5e-3,'GradientThreshold',1);

% create the critic based on the network approximator
critic = rlQValueRepresentation(criticNetwork,obsInfo,actInfo,...
    'Observation',{'state'},'Action',{'action'},criticOpts);

Create an actor representation.

% create a network to be used as underlying actor approximator
actorNetwork = [
    imageInputLayer([obsInfo.Dimension(1) 1 1],'Normalization','none','Name','state')
    fullyConnectedLayer(numel(actInfo),'Name','action','BiasLearnRateFactor',0,'Bias',0)];

% set some options for the actor
actorOpts = rlRepresentationOptions('LearnRate',1e-04,'GradientThreshold',1);

% create the actor based on the network approximator
actor = rlDeterministicActorRepresentation(actorNetwork,obsInfo,actInfo,...
    'Observation',{'state'},'Action',{'action'},actorOpts);

Specify agent options, and create a DDPG agent using the environment, actor, and critic.

agentOpts = rlDDPGAgentOptions(...
    'SampleTime',env.Ts,...
    'TargetSmoothFactor',1e-3,...
    'ExperienceBufferLength',1e6,...
    'DiscountFactor',0.99,...
    'MiniBatchSize',32);
agent = rlDDPGAgent(actor,critic,agentOpts);

To check your agent, use getAction to return the action from a random observation.

getAction(agent,{rand(2,1)})

ans = 1x1 cell array
    {[-0.4719]}

You can now test and train the agent within the environment.

Create DDPG Agent with Recurrent Neural Networks

For this example, load the environment used in the example “Train DDPG Agent to Control Double
Integrator System”. The observation from the environment is a vector containing the position and
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velocity of a mass. The action is a scalar representing a force ranging continuously from -2 to 2
Newton.

env = rlPredefinedEnv("DoubleIntegrator-Continuous");

Get observation and action specification information.

obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

Create a critic representation. To create a recurrent neural network, use sequenceInputLayer as
the input layer and include an lstmLayer as one of the other network layers.

statePath = sequenceInputLayer(obsInfo.Dimension(1), 'Normalization', 'none', 'Name', 'myobs');
actionPath = sequenceInputLayer(numel(actInfo), 'Normalization', 'none', 'Name', 'myact');
commonPath = [concatenationLayer(1,2,'Name','concat')
              reluLayer('Name','relu')
              lstmLayer(8,'OutputMode','sequence','Name','lstm')    
              fullyConnectedLayer(1,'Name','StateValue','BiasLearnRateFactor', 0, 'Bias', 0)];
criticNetwork = layerGraph(statePath);
criticNetwork = addLayers(criticNetwork, actionPath);
criticNetwork = addLayers(criticNetwork, commonPath);
criticNetwork = connectLayers(criticNetwork,'myobs','concat/in1');
criticNetwork = connectLayers(criticNetwork,'myact','concat/in2');

Set some options for the critic.

criticOpts = rlRepresentationOptions('LearnRate',5e-3,'GradientThreshold',1);

Create the critic based on the network approximator.

critic = rlQValueRepresentation(criticNetwork,obsInfo,actInfo,...
    'Observation',{'myobs'},'Action',{'myact'},criticOpts);

Create an actor representation.

Since the critic has a recurrent network, the actor must have a recurrent network too. Define a
recurrent neural network for the actor.

actorNetwork = [
    sequenceInputLayer(obsInfo.Dimension(1), 'Normalization', 'none', 'Name', 'myobs')
    lstmLayer(8,'OutputMode','sequence','Name','lstm')
    fullyConnectedLayer(numel(actInfo), 'Name', 'myact', 'BiasLearnRateFactor', 0, 'Bias', 0)];

Set actor options.

actorOpts = rlRepresentationOptions('LearnRate',1e-04,'GradientThreshold',1);

Create the actor.

actor = rlDeterministicActorRepresentation(actorNetwork,obsInfo,actInfo,...
    'Observation',{'myobs'},'Action',{'myact'},actorOpts);

Specify agent options, and create a DDPG agent using the environment, actor, and critic. To use a
DDPG agent with recurrent neural networks, you must specify a SequenceLength greater than 1.

agentOpts = rlDDPGAgentOptions(...
    'SampleTime',env.Ts,...
    'TargetSmoothFactor',1e-3,...
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    'ExperienceBufferLength',1e6,...
    'DiscountFactor',0.99,...
    'SequenceLength',20,...
    'MiniBatchSize',32);
agent = rlDDPGAgent(actor,critic,agentOpts);

To check your agent, use getAction to return the action from a random observation.

getAction(agent,{obsInfo.Dimension})

ans = 1x1 cell array
    {[-0.1483]}

You can now test and train the agent within the environment.

See Also
rlAgentInitializationOptions | rlDDPGAgentOptions | rlQValueRepresentation |
rlDeterministicActorRepresentation | Deep Network Designer

Topics
“Deep Deterministic Policy Gradient Agents”
“Reinforcement Learning Agents”
“Train Reinforcement Learning Agents”

Introduced in R2019a
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rlDDPGAgentOptions
Options for DDPG agent

Description
Use an rlDDPGAgentOptions object to specify options for deep deterministic policy gradient
(DDPG) agents. To create a DDPG agent, use rlDDPGAgent.

For more information, see “Deep Deterministic Policy Gradient Agents”.

For more information on the different types of reinforcement learning agents, see “Reinforcement
Learning Agents”.

Creation

Syntax
opt = rlDDPGAgentOptions
opt = rlDDPGAgentOptions(Name,Value)

Description

opt = rlDDPGAgentOptions creates an options object for use as an argument when creating a
DDPG agent using all default options. You can modify the object properties using dot notation.

opt = rlDDPGAgentOptions(Name,Value) sets option properties on page 3-31 using name-
value pairs. For example, rlDDPGAgentOptions('DiscountFactor',0.95) creates an option set
with a discount factor of 0.95. You can specify multiple name-value pairs. Enclose each property
name in quotes.

Properties
NoiseOptions — Noise model options
OrnsteinUhlenbeckActionNoise object

Noise model options, specified as an OrnsteinUhlenbeckActionNoise object. For more
information on the noise model, see “Noise Model” on page 3-34.

For an agent with multiple actions, if the actions have different ranges and units, it is likely that each
action requires different noise model parameters. If the actions have similar ranges and units, you
can set the noise parameters for all actions to the same value.

For example, for an agent with two actions, set the standard deviation of each action to a different
value while using the same decay rate for both standard deviations.

opt = rlDDPGAgentOptions;
opt.NoiseOptions.StandardDeviation = [0.1 0.2];
opt.NoiseOptions.StandardDeviationDecayRate = 1e-4;
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TargetSmoothFactor — Smoothing factor for target actor and critic updates
1e-3 (default) | positive scalar less than or equal to 1

Smoothing factor for target actor and critic updates, specified as a positive scalar less than or equal
to 1. For more information, see “Target Update Methods”.

TargetUpdateFrequency — Number of steps between target actor and critic updates
1 (default) | positive integer

Number of steps between target actor and critic updates, specified as a positive integer. For more
information, see “Target Update Methods”.

ResetExperienceBufferBeforeTraining — Option for clearing the experience buffer
true (default) | false

Option for clearing the experience buffer before training, specified as a logical value.

SaveExperienceBufferWithAgent — Option for saving the experience buffer
false (default) | true

Option for saving the experience buffer data when saving the agent, specified as a logical value. This
option applies both when saving candidate agents during training and when saving agents using the
save function.

For some agents, such as those with a large experience buffer and image-based observations, the
memory required for saving their experience buffer is large. In such cases, to not save the experience
buffer data, set SaveExperienceBufferWithAgent to false.

If you plan to further train your saved agent, you can start training with the previous experience
buffer as a starting point. In this case, set SaveExperienceBufferWithAgent to true.

SequenceLength — Maximum batch-training trajectory length when using RNN
1 (default) | positive integer

Maximum batch-training trajectory length when using a recurrent neural network, specified as a
positive integer. This value must be greater than 1 when using a recurrent neural network and 1
otherwise.

MiniBatchSize — Size of random experience mini-batch
64 (default) | positive integer

Size of random experience mini-batch, specified as a positive integer. During each training episode,
the agent randomly samples experiences from the experience buffer when computing gradients for
updating the critic properties. Large mini-batches reduce the variance when computing gradients but
increase the computational effort.

NumStepsToLookAhead — Number of future rewards used to estimate the value of the policy
1 (default) | positive integer

Number of future rewards used to estimate the value of the policy, specified as a positive integer. For
more information, see [1], Chapter 7.

Note that if parallel training is enabled (that is if an rlTrainingOptions option object in which the
UseParallel property is set to true is passed to train) then NumStepsToLookAhead must be set
to 1, otherwise an error is generated. This guarantees that experiences are stored contiguously.
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ExperienceBufferLength — Experience buffer size
10000 (default) | positive integer

Experience buffer size, specified as a positive integer. During training, the agent computes updates
using a mini-batch of experiences randomly sampled from the buffer.

SampleTime — Sample time of agent
1 (default) | positive scalar

Sample time of agent, specified as a positive scalar.

Within a Simulink environment, the agent gets executed every SampleTime seconds of simulation
time.

Within a MATLAB environment, the agent gets executed every time the environment advances.
However, SampleTime is the time interval between consecutive elements in the output experience
returned by sim or train.

DiscountFactor — Discount factor
0.99 (default) | positive scalar less than or equal to 1

Discount factor applied to future rewards during training, specified as a positive scalar less than or
equal to 1.

Object Functions
rlDDPGAgent Deep deterministic policy gradient reinforcement learning agent

Examples

Create DDPG Agent Options Object

This example shows how to create a DDPG agent option object.

Create an rlDDPGAgentOptions object that specifies the mini-batch size.

opt = rlDDPGAgentOptions('MiniBatchSize',48)

opt = 
  rlDDPGAgentOptions with properties:

                           NoiseOptions: [1x1 rl.option.OrnsteinUhlenbeckActionNoise]
                     TargetSmoothFactor: 1.0000e-03
                  TargetUpdateFrequency: 1
    ResetExperienceBufferBeforeTraining: 1
          SaveExperienceBufferWithAgent: 0
                         SequenceLength: 1
                          MiniBatchSize: 48
                    NumStepsToLookAhead: 1
                 ExperienceBufferLength: 10000
                             SampleTime: 1
                         DiscountFactor: 0.9900
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You can modify options using dot notation. For example, set the agent sample time to 0.5.

opt.SampleTime = 0.5;

Algorithms
Noise Model

DDPG agents use an Ornstein-Uhlenbeck action noise model for exploration.

Ornstein-Uhlenbeck Action Noise

An OrnsteinUhlenbeckActionNoise object has the following numeric value properties.

Property Description Default Value
InitialAction Initial value of action for noise

model
0

Mean Noise model mean 0
MeanAttractionConstant Constant specifying how quickly

the noise model output is
attracted to the mean

0.15

StandardDeviationDecayRa
te

Decay rate of the standard
deviation

0

StandardDeviation Noise model standard deviation 0.3
StandardDeviationMin Minimum standard deviation 0

At each sample time step k, the noise value v(k) is updated using the following formula, where Ts is
the agent sample time, and the initial value v(1) is defined by the InitialAction parameter.

v(k+1) = v(k) + MeanAttractionConstant.*(Mean - v(k)).*Ts
       + StandardDeviation(k).*randn(size(Mean)).*sqrt(Ts)

At each sample time step, the standard deviation decays as shown in the following code.

decayedStandardDeviation = StandardDeviation(k).*(1 - StandardDeviationDecayRate);
StandardDeviation(k+1) = max(decayedStandardDeviation,StandardDeviationMin);

You can calculate how many samples it will take for the standard deviation to be halved using this
simple formula.

halflife = log(0.5)/log(1-StandardDeviationDecayRate);

For continuous action signals, it is important to set the noise standard deviation appropriately to
encourage exploration. It is common to set StandardDeviation*sqrt(Ts) to a value between 1%
and 10% of your action range.

If your agent converges on local optima too quickly, promote agent exploration by increasing the
amount of noise; that is, by increasing the standard deviation. Also, to increase exploration, you can
reduce the StandardDeviationDecayRate.
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Compatibility Considerations
Property names defining noise probability distribution in the
OrnsteinUhlenbeckActionNoise object have changed
Behavior changed in R2021a

The properties defining the probability distribution of the Ornstein-Uhlenbeck (OU) noise model have
been renamed. DDPG agents use OU noise for exploration.

• The Variance property has been renamed StandardDeviation.
• The VarianceDecayRate property has been renamed StandardDeviationDecayRate.
• The VarianceMin property has been renamed StandardDeviationMin.

The default values of these properties remain the same. When an
OrnsteinUhlenbeckActionNoise noise object saved from a previous MATLAB release is loaded,
the values of Variance, VarianceDecayRate, and VarianceMin are copied in the
StandardDeviation, StandardDeviationDecayRate, and StandardDeviationMin,
respectively.

The Variance, VarianceDecayRate, and VarianceMin properties still work, but they are not
recommended. To define the probability distribution of the OU noise model, use the new property
names instead.

Update Code

This table shows how to update your code to use the new property names for rlDDPGAgentOptions
object ddpgopt.

Not Recommended Recommended
ddpgopt.NoiseOptions.Variance = 0.5; ddpgopt.NoiseOptions.StandardDeviation = 0.5;
ddpgopt.NoiseOptions.VarianceDecayRate = 0.1;ddpgopt.NoiseOptions.StandardDeviationDecayRate = 0.1;
ddpgopt.NoiseOptions.VarianceMin = 0; ddpgopt.NoiseOptions.StandardDeviationMin = 0;

Target update method settings for DDPG agents have changed
Behavior changed in R2020a

Target update method settings for DDPG agents have changed. The following changes require
updates to your code:

• The TargetUpdateMethod option has been removed. Now, DDPG agents determine the target
update method based on the TargetUpdateFrequency and TargetSmoothFactor option
values.

• The default value of TargetUpdateFrequency has changed from 4 to 1.

To use one of the following target update methods, set the TargetUpdateFrequency and
TargetSmoothFactor properties as indicated.

Update Method TargetUpdateFrequency TargetSmoothFactor
Smoothing 1 Less than 1
Periodic Greater than 1 1
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Update Method TargetUpdateFrequency TargetSmoothFactor
Periodic smoothing (new
method in R2020a)

Greater than 1 Less than 1

The default target update configuration, which is a smoothing update with a TargetSmoothFactor
value of 0.001, remains the same.

Update Code

This table shows some typical uses of rlDDPGAgentOptions and how to update your code to use the
new option configuration.

Not Recommended Recommended
opt = rlDDPGAgentOptions('TargetUpdateMethod',"smoothing");opt = rlDDPGAgentOptions;
opt = rlDDPGAgentOptions('TargetUpdateMethod',"periodic");opt = rlDDPGAgentOptions;

opt.TargetUpdateFrequency = 4;
opt.TargetSmoothFactor = 1;

opt = rlDDPGAgentOptions;
opt.TargetUpdateMethod = "periodic";
opt.TargetUpdateFrequency = 5;

opt = rlDDPGAgentOptions;
opt.TargetUpdateFrequency = 5;
opt.TargetSmoothFactor = 1;

References
[1] Sutton, Richard S., and Andrew G. Barto. Reinforcement Learning: An Introduction. Second

edition. Adaptive Computation and Machine Learning. Cambridge, Mass: The MIT Press,
2018.

See Also
Topics
“Deep Deterministic Policy Gradient Agents”

Introduced in R2019a
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rlDeterministicActorRepresentation
Deterministic actor representation for reinforcement learning agents

Description
This object implements a function approximator to be used as a deterministic actor within a
reinforcement learning agent with a continuous action space. A deterministic actor takes
observations as inputs and returns as outputs the action that maximizes the expected cumulative
long-term reward, thereby implementing a deterministic policy. After you create an
rlDeterministicActorRepresentation object, use it to create a suitable agent, such as an
rlDDPGAgent agent. For more information on creating representations, see “Create Policy and Value
Function Representations”.

Creation

Syntax
actor = rlDeterministicActorRepresentation(net,observationInfo,
actionInfo,'Observation',obsName,'Action',actName)
actor = rlDeterministicActorRepresentation({basisFcn,W0},observationInfo,
actionInfo)
actor = rlDeterministicActorRepresentation( ___ ,options)

Description

actor = rlDeterministicActorRepresentation(net,observationInfo,
actionInfo,'Observation',obsName,'Action',actName) creates a deterministic actor using
the deep neural network net as approximator. This syntax sets the ObservationInfo and ActionInfo
properties of actor to the inputs observationInfo and actionInfo, containing the specifications
for observations and actions, respectively. actionInfo must specify a continuous action space,
discrete action spaces are not supported. obsName must contain the names of the input layers of net
that are associated with the observation specifications. The action names actName must be the
names of the output layers of net that are associated with the action specifications.

actor = rlDeterministicActorRepresentation({basisFcn,W0},observationInfo,
actionInfo) creates a deterministic actor using a custom basis function as underlying
approximator. The first input argument is a two-elements cell in which the first element contains the
handle basisFcn to a custom basis function, and the second element contains the initial weight
matrix W0. This syntax sets the ObservationInfo and ActionInfo properties of actor respectively to
the inputs observationInfo and actionInfo.

actor = rlDeterministicActorRepresentation( ___ ,options) creates a deterministic
actor using the additional options set options, which is an rlRepresentationOptions object.
This syntax sets the Options property of actor to theoptions input argument. You can use this
syntax with any of the previous input-argument combinations.
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Input Arguments

net — Deep neural network
array of Layer objects | layerGraph object | DAGNetwork object | SeriesNetwork object |
dlNetwork object

Deep neural network used as the underlying approximator within the actor, specified as one of the
following:

• Array of Layer objects
• layerGraph object
• DAGNetwork object
• SeriesNetwork object
• dlnetwork object

The network input layers must be in the same order and with the same data type and dimensions as
the signals defined in ObservationInfo. Also, the names of these input layers must match the
observation names listed in obsName.

The network output layer must have the same data type and dimension as the signal defined in
ActionInfo. Its name must be the action name specified in actName.

rlDeterministicActorRepresentation objects support recurrent deep neural networks.

For a list of deep neural network layers, see “List of Deep Learning Layers”. For more information on
creating deep neural networks for reinforcement learning, see “Create Policy and Value Function
Representations”.

obsName — Observation names
string | character vector | cell array of character vectors

Observation names, specified as a cell array of strings or character vectors. The observation names
must be the names of the input layers in net.
Example: {'my_obs'}

actName — Action name
string | character vector | single-element cell array containing a character vector

Action name, specified as a single-element cell array that contains a character vector. It must be the
name of the output layer of net.
Example: {'my_act'}

basisFcn — Custom basis function
function handle

Custom basis function, specified as a function handle to a user-defined MATLAB function. The user
defined function can either be an anonymous function or a function on the MATLAB path. The action
to be taken based on the current observation, which is the output of the actor, is the vector a =
W'*B, where W is a weight matrix containing the learnable parameters and B is the column vector
returned by the custom basis function.

When creating a deterministic actor representation, your basis function must have the following
signature.
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B = myBasisFunction(obs1,obs2,...,obsN)

Here obs1 to obsN are observations in the same order and with the same data type and dimensions
as the signals defined in observationInfo
Example: @(obs1,obs2,obs3) [obs3(2)*obs1(1)^2; abs(obs2(5)+obs3(1))]

W0 — Initial value of the basis function weights
column vector

Initial value of the basis function weights, W, specified as a matrix having as many rows as the length
of the vector returned by the basis function and as many columns as the dimension of the action
space.

Properties
Options — Representation options
rlRepresentationOptions object

Representation options, specified as an rlRepresentationOptions object. Available options
include the optimizer used for training and the learning rate.

ObservationInfo — Observation specifications
rlFiniteSetSpec object | rlNumericSpec object | array

Observation specifications, specified as an rlFiniteSetSpec or rlNumericSpec object or an array
of such objects. These objects define properties such as the dimensions, data types, and names of the
observation signals.

rlDeterministicActorRepresentation sets the ObservationInfo property of actor to the
input observationInfo.

You can extract ObservationInfo from an existing environment or agent using
getObservationInfo. You can also construct the specifications manually.

ActionInfo — Action specifications
rlNumericSpec object

Action specifications for a continuous action space, specified as an rlNumericSpec object defining
properties such as dimensions, data type and name of the action signals. The deterministic actor
representation does not support discrete actions.

rlDeterministicActorRepresentation sets the ActionInfo property of actor to the input
observationInfo.

You can extract ActionInfo from an existing environment or agent using getActionInfo. You can
also construct the specification manually.

For custom basis function representations, the action signal must be a scalar, a column vector, or a
discrete action.

Object Functions
rlDDPGAgent Deep deterministic policy gradient reinforcement learning agent
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rlTD3Agent Twin-delayed deep deterministic policy gradient reinforcement learning agent
getAction Obtain action from agent or actor representation given environment observations

Examples

Create Deterministic Actor from Deep Neural Network

Create an observation specification object (or alternatively use getObservationInfo to extract the
specification object from an environment). For this example, define the observation space as a
continuous four-dimensional space, so that a single observation is a column vector containing four
doubles.

obsInfo = rlNumericSpec([4 1]);

Create an action specification object (or alternatively use getActionInfo to extract the
specification object from an environment). For this example, define the action space as a continuous
two-dimensional space, so that a single action is a column vector containing two doubles.

actInfo = rlNumericSpec([2 1]);

Create a deep neural network approximator for the actor. The input of the network (here called
myobs) must accept a four-element vector (the observation vector just defined by obsInfo), and its
output must be the action (here called myact) and be a two-element vector, as defined by actInfo.

net = [featureInputLayer(4,'Normalization','none','Name','myobs') 
    fullyConnectedLayer(2,'Name','myact')];

Create the critic with rlQValueRepresentation, using the network, the observations and action
specification objects, as well as the names of the network input and output layers.

actor = rlDeterministicActorRepresentation(net,obsInfo,actInfo, ...
    'Observation',{'myobs'},'Action',{'myact'})

actor = 
  rlDeterministicActorRepresentation with properties:

         ActionInfo: [1x1 rl.util.rlNumericSpec]
    ObservationInfo: [1x1 rl.util.rlNumericSpec]
            Options: [1x1 rl.option.rlRepresentationOptions]

To check your actor, use getAction to return the action from a random observation, using the
current network weights.

act = getAction(actor,{rand(4,1)}); act{1}

ans = 2x1 single column vector

   -0.5054
    1.5390

You can now use the actor to create a suitable agent (such as an rlACAgent, rlPGAgent, or
rlDDPGAgent agent).
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Create Deterministic Actor from Custom Basis Function

Create an observation specification object (or alternatively use getObservationInfo to extract the
specification object from an environment). For this example, define the observation space as a
continuous four-dimensional space, so that a single observation is a column vector containing 3
doubles.

obsInfo = rlNumericSpec([3 1]);

The deterministic actor does not support discrete action spaces. Therefore, create a continuous
action space specification object (or alternatively use getActionInfo to extract the specification
object from an environment). For this example, define the action space as a continuous two-
dimensional space, so that a single action is a column vector containing 2 doubles.

actInfo = rlNumericSpec([2 1]);

Create a custom basis function. Each element is a function of the observations defined by obsInfo.

myBasisFcn = @(myobs) [myobs(2)^2; myobs(1); 2*myobs(2)+myobs(1); -myobs(3)]

myBasisFcn = function_handle with value:
    @(myobs)[myobs(2)^2;myobs(1);2*myobs(2)+myobs(1);-myobs(3)]

The output of the actor is the vector W'*myBasisFcn(myobs), which is the action taken as a result
of the given observation. The weight matrix W contains the learnable parameters and must have as
many rows as the length of the basis function output and as many columns as the dimension of the
action space.

Define an initial parameter matrix.

W0 = rand(4,2);

Create the actor. The first argument is a two-element cell containing both the handle to the custom
function and the initial weight matrix. The second and third arguments are, respectively, the
observation and action specification objects.

actor = rlDeterministicActorRepresentation({myBasisFcn,W0},obsInfo,actInfo)

actor = 
  rlDeterministicActorRepresentation with properties:

         ActionInfo: [1x1 rl.util.rlNumericSpec]
    ObservationInfo: [1x1 rl.util.rlNumericSpec]
            Options: [1x1 rl.option.rlRepresentationOptions]

To check your actor, use the getAction function to return the action from a given observation, using
the current parameter matrix.

a = getAction(actor,{[1 2 3]'});
a{1}

ans = 
  2x1 dlarray
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    2.0595
    2.3788

You can now use the actor (along with an critic) to create a suitable continuous action space agent.

Create Deterministic Actor from Recurrent Neural Network

Create observation and action information. You can also obtain these specifications from an
environment.

obsinfo = rlNumericSpec([4 1]);
actinfo = rlNumericSpec([2 1]);
numObs = obsinfo.Dimension(1);
numAct = actinfo.Dimension(1);

Create a recurrent deep neural network for the actor. To create a recurrent neural network, use a
sequenceInputLayer as the input layer and include at least one lstmLayer.

net = [sequenceInputLayer(numObs,'Normalization','none','Name','state')
            fullyConnectedLayer(10,'Name','fc1')
            reluLayer('Name','relu1')
            lstmLayer(8,'OutputMode','sequence','Name','ActorLSTM')
            fullyConnectedLayer(20,'Name','CriticStateFC2')
            fullyConnectedLayer(numAct,'Name','action')
            tanhLayer('Name','tanh1')];

Create a deterministic actor representation for the network.

actorOptions = rlRepresentationOptions('LearnRate',1e-3,'GradientThreshold',1);
actor = rlDeterministicActorRepresentation(net,obsinfo,actinfo,...
    'Observation',{'state'},'Action',{'tanh1'});

See Also
Functions
rlRepresentationOptions | getActionInfo | getObservationInfo

Topics
“Create Policy and Value Function Representations”
“Reinforcement Learning Agents”

Introduced in R2020a
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rlDQNAgent
Deep Q-network reinforcement learning agent

Description
The deep Q-network (DQN) algorithm is a model-free, online, off-policy reinforcement learning
method. A DQN agent is a value-based reinforcement learning agent that trains a critic to estimate
the return or future rewards. DQN is a variant of Q-learning, and it operates only within discrete
action spaces.

For more information, “Deep Q-Network Agents”. For more information on the different types of
reinforcement learning agents, see “Reinforcement Learning Agents”.

Creation

Syntax
agent = rlDQNAgent(observationInfo,actionInfo)
agent = rlDQNAgent(observationInfo,actionInfo,initOpts)

agent = rlDQNAgent(critic)

agent = rlDQNAgent(critic,agentOptions)

Description
Create Agent from Observation and Action Specifications

agent = rlDQNAgent(observationInfo,actionInfo) creates a DQN agent for an environment
with the given observation and action specifications, using default initialization options. The critic
representation in the agent uses a default multi-output Q-value deep neural network built from the
observation specification observationInfo and the action specification actionInfo.

agent = rlDQNAgent(observationInfo,actionInfo,initOpts) creates a DQN agent for an
environment with the given observation and action specifications. The agent uses a default network
configured using options specified in the initOpts object. For more information on the initialization
options, see rlAgentInitializationOptions.

Create Agent from Critic Representation

agent = rlDQNAgent(critic) creates a DQN agent with the specified critic network using a
default option set for a DQN agent.

Specify Agent Options

agent = rlDQNAgent(critic,agentOptions) creates a DQN agent with the specified critic
network and sets the AgentOptions property to the agentOptions input argument. Use this syntax
after any of the input arguments in the previous syntaxes..
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Input Arguments

observationInfo — Observation specifications
specification object | array of specification objects

Observation specifications, specified as a reinforcement learning specification object or an array of
specification objects defining properties such as dimensions, data type, and names of the observation
signals.

You can extract observationInfo from an existing environment or agent using
getObservationInfo. You can also construct the specifications manually using rlFiniteSetSpec
or rlNumericSpec.

actionInfo — Action specification
specification object

Action specifications, specified as a reinforcement learning specification object defining properties
such as dimensions, data type, and names of the action signals.

Since a DDPG agent operates in a discrete action space, you must specify actionInfo as an
rlFiniteSetSpec object.

You can extract actionInfo from an existing environment or agent using getActionInfo. You can
also construct the specification manually using rlFiniteSetSpec.

initOpts — Agent initialization options
rlAgentInitializationOptions object

Agent initialization options, specified as an rlAgentInitializationOptions object.

critic — Critic network representation
rlQValueRepresentation object

Critic network representation, specified as an rlQValueRepresentation object. For more
information on creating critic representations, see “Create Policy and Value Function
Representations”.

Your critic representation can use a recurrent neural network as its function approximator. However,
only the multi-output Q-value function representation supports recurrent neural networks. For an
example, see “Create DQN Agent with Recurrent Neural Network” on page 3-50.

Properties
AgentOptions — Agent options
rlDQNAgentOptions object

Agent options, specified as an rlDQNAgentOptions object.

If you create a DQN agent with a default critic representation that uses a recurrent neural network,
the default value of AgentOptions.SequenceLength is 32.

ExperienceBuffer — Experience buffer
ExperienceBuffer object
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Experience buffer, specified as an ExperienceBuffer object. During training the agent stores each
of its experiences (S,A,R,S') in a buffer. Here:

• S is the current observation of the environment.
• A is the action taken by the agent.
• R is the reward for taking action A.
• S' is the next observation after taking action A.

For more information on how the agent samples experience from the buffer during training, see
“Deep Q-Network Agents”.

Object Functions
train Train reinforcement learning agents within a specified environment
sim Simulate trained reinforcement learning agents within specified

environment
getAction Obtain action from agent or actor representation given environment

observations
getActor Get actor representation from reinforcement learning agent
setActor Set actor representation of reinforcement learning agent
getCritic Get critic representation from reinforcement learning agent
setCritic Set critic representation of reinforcement learning agent
generatePolicyFunction Create function that evaluates trained policy of reinforcement learning

agent

Examples

Create DQN Agent from Observation and Action Specifications

Create an environment with a discrete action space, and obtain its observation and action
specifications. For this example, load the environment used in the example “Create Agent Using Deep
Network Designer and Train Using Image Observations”. This environment has two observations: a
50-by-50 grayscale image and a scalar (the angular velocity of the pendulum). The action is a scalar
with five possible elements (a torque of either -2, -1, 0, 1, or 2 Nm applied to a swinging pole).

% load predefined environment
env = rlPredefinedEnv("SimplePendulumWithImage-Discrete");

% obtain observation and action specifications
obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

The agent creation function initializes the actor and critic networks randomly. You can ensure
reproducibility by fixing the seed of the random generator. To do so, uncomment the following line.

% rng(0)

Create a deep Q-network agent from the environment observation and action specifications.

agent = rlDQNAgent(obsInfo,actInfo);

To check your agent, use getAction to return the action from a random observation.

getAction(agent,{rand(obsInfo(1).Dimension),rand(obsInfo(2).Dimension)})
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ans = 1

You can now test and train the agent within the environment.

Create DQN Agent Using Initialization Options

Create an environment with a discrete action space, and obtain its observation and action
specifications. For this example, load the environment used in the example “Create Agent Using Deep
Network Designer and Train Using Image Observations”. This environment has two observations: a
50-by-50 grayscale image and a scalar (the angular velocity of the pendulum). The action is a scalar
with five possible elements (a torque of either -2, -1, 0, 1, or 2 Nm applied to a swinging pole).

% load predefined environment
env = rlPredefinedEnv("SimplePendulumWithImage-Discrete");

% obtain observation and action specifications
obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

Create an agent initialization option object, specifying that each hidden fully connected layer in the
network must have 128 neurons (instead of the default number, 256).

initOpts = rlAgentInitializationOptions('NumHiddenUnit',128);

The agent creation function initializes the actor and critic networks randomly. You can ensure
reproducibility by fixing the seed of the random generator. To do so, uncomment the following line.

% rng(0)

Create a policy gradient agent from the environment observation and action specifications.

agent = rlPGAgent(obsInfo,actInfo,initOpts);

Reduce the critic learning rate to 1e-3.

critic = getCritic(agent);
critic.Options.LearnRate = 1e-3;
agent  = setCritic(agent,critic);

Extract the deep neural network from both the critic.

criticNet = getModel(getCritic(agent));

The default DQN agent uses a multi-output Q-value critic approximator. A multi-output approximator
has observations as inputs and state-action values as outputs. Each output element represents the
expected cumulative long-term reward for taking the corresponding discrete action from the state
indicated by the observation inputs.

Display the layers of the critic network, and verify that each hidden fully connected layer has 128
neurons

criticNet.Layers

ans = 
  11x1 Layer array with layers:
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     1   'input_1'        Image Input       50x50x1 images
     2   'conv_1'         Convolution       64 3x3x1 convolutions with stride [1  1] and padding [0  0  0  0]
     3   'relu_input_1'   ReLU              ReLU
     4   'fc_1'           Fully Connected   128 fully connected layer
     5   'input_2'        Feature Input     1 features
     6   'fc_2'           Fully Connected   128 fully connected layer
     7   'concat'         Concatenation     Concatenation of 2 inputs along dimension 1
     8   'relu_body'      ReLU              ReLU
     9   'fc_body'        Fully Connected   128 fully connected layer
    10   'body_output'    ReLU              ReLU
    11   'output'         Fully Connected   1 fully connected layer

Plot the critic network

plot(layerGraph(criticNet))

To check your agent, use getAction to return the action from a random observation.

getAction(agent,{rand(obsInfo(1).Dimension),rand(obsInfo(2).Dimension)})

ans = 1x1 cell array
    {[2]}

You can now test and train the agent within the environment.
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Create a DQN Agent Using a Multi-Output Critic Representation

Create an environment interface and obtain its observation and action specifications. For this
example load the predefined environment used for the “Train DQN Agent to Balance Cart-Pole
System” example. This environment has a continuous four-dimensional observation space (the
positions and velocities of both cart and pole) and a discrete one-dimensional action space consisting
on the application of two possible forces, -10N or 10N.

% load predefined environment
env = rlPredefinedEnv("CartPole-Discrete");

% get observation and action specification objects
obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

For an agent with a discrete action space, you have the option to create a multi-output critic
representation, which is generally more efficient than a comparable single-output critic
representation.

A multi-output critic has only the observation as input, and an output vector having as many elements
as the number of possible discrete actions. Each output element represents the expected cumulative
long-term reward following from the observation given as input, when the corresponding discrete
action is taken.

Create the multi-output critic representation using a deep neural network approximator.

% create a deep neural network approximator 
% the observation input layer must have 4 elements (obsInfo.Dimension(1))
% the action output layer must have 2 elements (length(actInfo.Elements))
dnn = [
    imageInputLayer([obsInfo.Dimension(1) 1 1], 'Normalization', 'none', 'Name', 'state')
    fullyConnectedLayer(24, 'Name', 'CriticStateFC1')
    reluLayer('Name', 'CriticRelu1')
    fullyConnectedLayer(24, 'Name', 'CriticStateFC2')
    reluLayer('Name','CriticCommonRelu')
    fullyConnectedLayer(length(actInfo.Elements), 'Name', 'output')];

% set some options for the critic
criticOpts = rlRepresentationOptions('LearnRate',0.01,'GradientThreshold',1);

% create the critic based on the network approximator
critic = rlQValueRepresentation(dnn,obsInfo,actInfo,'Observation',{'state'},criticOpts);

Specify agent options, and create a DQN agent using the critic.

agentOpts = rlDQNAgentOptions(...
    'UseDoubleDQN',false, ...    
    'TargetUpdateMethod',"periodic", ...
    'TargetUpdateFrequency',4, ...   
    'ExperienceBufferLength',100000, ...
    'DiscountFactor',0.99, ...
    'MiniBatchSize',256);

agent = rlDQNAgent(critic,agentOpts)

agent = 
  rlDQNAgent with properties:

3 Objects

3-48



        AgentOptions: [1x1 rl.option.rlDQNAgentOptions]
    ExperienceBuffer: [1x1 rl.util.ExperienceBuffer]

To check your agent, use getAction to return the action from a random observation.

getAction(agent,{rand(4,1)})

ans = 10

You can now test and train the agent against the environment.

Create a DQN Agent Using a Single-Output Critic Representation

Create an environment interface and obtain its observation and action specifications. For this
example load the predefined environment used for the “Train DQN Agent to Balance Cart-Pole
System” example. This environment has a continuous four-dimensional observation space (the
positions and velocities of both cart and pole) and a discrete one-dimensional action space consisting
on the application of two possible forces, -10N or 10N.

% load predefined environment
env = rlPredefinedEnv("CartPole-Discrete");

% get observation and specification info
obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

Create a single-output critic representation using a deep neural network approximator. It must have
both observations and action as input layers, and a single scalar output representing the expected
cumulative long-term reward following from the given observation and action.

% create a deep neural network approximator 
% the observation input layer must have 4 elements (obsInfo.Dimension(1))
% the action input layer must have 1 element (actInfo.Dimension(1))
% the output must be a scalar
statePath = [
    featureInputLayer(obsInfo.Dimension(1), 'Normalization', 'none', 'Name', 'state')
    fullyConnectedLayer(24, 'Name', 'CriticStateFC1')
    reluLayer('Name', 'CriticRelu1')
    fullyConnectedLayer(24, 'Name', 'CriticStateFC2')];
actionPath = [
    featureInputLayer(actInfo.Dimension(1), 'Normalization', 'none', 'Name', 'action')
    fullyConnectedLayer(24, 'Name', 'CriticActionFC1')];
commonPath = [
    additionLayer(2,'Name', 'add')
    reluLayer('Name','CriticCommonRelu')
    fullyConnectedLayer(1, 'Name', 'output')];
criticNetwork = layerGraph(statePath);
criticNetwork = addLayers(criticNetwork, actionPath);
criticNetwork = addLayers(criticNetwork, commonPath);    
criticNetwork = connectLayers(criticNetwork,'CriticStateFC2','add/in1');
criticNetwork = connectLayers(criticNetwork,'CriticActionFC1','add/in2');

% set some options for the critic
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criticOpts = rlRepresentationOptions('LearnRate',0.01,'GradientThreshold',1);

% create the critic based on the network approximator
critic = rlQValueRepresentation(criticNetwork,obsInfo,actInfo,...
    'Observation',{'state'},'Action',{'action'},criticOpts);

Specify agent options, and create a DQN agent using the critic.

agentOpts = rlDQNAgentOptions(...
    'UseDoubleDQN',false, ...    
    'TargetUpdateMethod',"periodic", ...
    'TargetUpdateFrequency',4, ...   
    'ExperienceBufferLength',100000, ...
    'DiscountFactor',0.99, ...
    'MiniBatchSize',256);

agent = rlDQNAgent(critic,agentOpts)

agent = 
  rlDQNAgent with properties:

        AgentOptions: [1x1 rl.option.rlDQNAgentOptions]
    ExperienceBuffer: [1x1 rl.util.ExperienceBuffer]

To check your agent, use getAction to return the action from a random observation.

getAction(agent,{rand(4,1)})

ans = 10

You can now test and train the agent against the environment.

Create DQN Agent with Recurrent Neural Network

For this example load the predefined environment used for the “Train DQN Agent to Balance Cart-
Pole System” example.

env = rlPredefinedEnv('CartPole-Discrete');

Get observation and action information. This environment has a continuous four-dimensional
observation space (the positions and velocities of both cart and pole) and a discrete one-dimensional
action space consisting on the application of two possible forces, -10N or 10N.

obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

Create a recurrent deep neural network for your critic. To create a recurrent neural network, use a
sequenceInputLayer as the input layer and include an lstmLayer as one of the other network
layers.

For DQN agents, only the multi-output Q-value function representation supports recurrent neural
networks. For multi-output Q-value function representations, the number of elements of the output
layer has to be equal to the number of possible actions: numel(actInfo.Elements).
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criticNetwork = [
    sequenceInputLayer(obsInfo.Dimension(1),'Normalization','none','Name','state')
    fullyConnectedLayer(50, 'Name', 'CriticStateFC1')
    reluLayer('Name','CriticRelu1')
    lstmLayer(20,'OutputMode','sequence','Name','CriticLSTM');
    fullyConnectedLayer(20,'Name','CriticStateFC2')
    reluLayer('Name','CriticRelu2')
    fullyConnectedLayer(numel(actInfo.Elements),'Name','output')];

Create a representation for your critic using the recurrent neural network.

criticOptions = rlRepresentationOptions('LearnRate',1e-3,'GradientThreshold',1);
critic = rlQValueRepresentation(criticNetwork,obsInfo,actInfo,...
    'Observation','state',criticOptions);

Specify options for creating the DQN agent. To use a recurrent neural network, you must specify a
SequenceLength greater than 1.

agentOptions = rlDQNAgentOptions(...
    'UseDoubleDQN',false, ...
    'TargetSmoothFactor',5e-3, ...
    'ExperienceBufferLength',1e6, ...
    'SequenceLength',20);
agentOptions.EpsilonGreedyExploration.EpsilonDecay = 1e-4;

Create the agent. The actor and critic networks are initialized randomly.

agent = rlDQNAgent(critic,agentOptions);

Check your agent using getAction to return the action from a random observation.

getAction(agent,rand(obsInfo.Dimension))

ans = -10

See Also
rlAgentInitializationOptions | rlDQNAgentOptions | rlQValueRepresentation | Deep
Network Designer

Topics
“Deep Q-Network Agents”
“Reinforcement Learning Agents”
“Train Reinforcement Learning Agents”

Introduced in R2019a
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rlDQNAgentOptions
Options for DQN agent

Description
Use an rlDQNAgentOptions object to specify options for deep Q-network (DQN) agents. To create a
DQN agent, use rlDQNAgent.

For more information, see “Deep Q-Network Agents”.

For more information on the different types of reinforcement learning agents, see “Reinforcement
Learning Agents”.

Creation

Syntax
opt = rlDQNAgentOptions
opt = rlDQNAgentOptions(Name,Value)

Description

opt = rlDQNAgentOptions creates an options object for use as an argument when creating a DQN
agent using all default settings. You can modify the object properties using dot notation.

opt = rlDQNAgentOptions(Name,Value) sets option properties on page 3-52 using name-value
pairs. For example, rlDQNAgentOptions('DiscountFactor',0.95) creates an option set with a
discount factor of 0.95. You can specify multiple name-value pairs. Enclose each property name in
quotes.

Properties
UseDoubleDQN — Flag for using double DQN
true (default) | false

Flag for using double DQN for value function target updates, specified as a logical value. For most
application set UseDoubleDQN to "on". For more information, see “Deep Q-Network Agents”.

EpsilonGreedyExploration — Options for epsilon-greedy exploration
EpsilonGreedyExploration object

Options for epsilon-greedy exploration, specified as an EpsilonGreedyExploration object with the
following properties.
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Property Description Default Value
Epsilon Probability threshold to either

randomly select an action or
select the action that maximizes
the state-action value function.
A larger value of Epsilon
means that the agent randomly
explores the action space at a
higher rate.

1

EpsilonMin Minimum value of Epsilon 0.01
EpsilonDecay Decay rate 0.0050

At the end of each training time step, if Epsilon is greater than EpsilonMin, then it is updated
using the following formula.

Epsilon = Epsilon*(1-EpsilonDecay)

If your agent converges on local optima too quickly, you can promote agent exploration by increasing
Epsilon.

To specify exploration options, use dot notation after creating the rlDQNAgentOptions object opt.
For example, set the epsilon value to 0.9.
opt.EpsilonGreedyExploration.Epsilon = 0.9;

SequenceLength — Maximum batch-training trajectory length when using RNN
1 (default) | positive integer

Maximum batch-training trajectory length when using a recurrent neural network for the critic,
specified as a positive integer. This value must be greater than 1 when using a recurrent neural
network for the critic and 1 otherwise.

TargetSmoothFactor — Smoothing factor for target critic updates
1e-3 (default) | positive scalar less than or equal to 1

Smoothing factor for target critic updates, specified as a positive scalar less than or equal to 1. For
more information, see “Target Update Methods”.

TargetUpdateFrequency — Number of steps between target critic updates
1 (default) | positive integer

Number of steps between target critic updates, specified as a positive integer. For more information,
see “Target Update Methods”.

ResetExperienceBufferBeforeTraining — Option for clearing the experience buffer
true (default) | false

Option for clearing the experience buffer before training, specified as a logical value.

SaveExperienceBufferWithAgent — Option for saving the experience buffer
false (default) | true

Option for saving the experience buffer data when saving the agent, specified as a logical value. This
option applies both when saving candidate agents during training and when saving agents using the
save function.
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For some agents, such as those with a large experience buffer and image-based observations, the
memory required for saving their experience buffer is large. In such cases, to not save the experience
buffer data, set SaveExperienceBufferWithAgent to false.

If you plan to further train your saved agent, you can start training with the previous experience
buffer as a starting point. In this case, set SaveExperienceBufferWithAgent to true.

MiniBatchSize — Size of random experience mini-batch
64 (default) | positive integer

Size of random experience mini-batch, specified as a positive integer. During each training episode,
the agent randomly samples experiences from the experience buffer when computing gradients for
updating the critic properties. Large mini-batches reduce the variance when computing gradients but
increase the computational effort.

When using a recurrent neural network for the critic, MiniBatchSize is the number of experience
trajectories in a batch, where each trajectory has length equal to SequenceLength.

NumStepsToLookAhead — Number of future rewards used to estimate the value of the policy
1 (default) | positive integer

Number of future rewards used to estimate the value of the policy, specified as a positive integer. For
more information, see chapter 7 of [1].

N-step Q learning is not supported when using a recurrent neural network for the critic. In this case,
NumStepsToLookAhead must be 1.

ExperienceBufferLength — Experience buffer size
10000 (default) | positive integer

Experience buffer size, specified as a positive integer. During training, the agent computes updates
using a mini-batch of experiences randomly sampled from the buffer.

SampleTime — Sample time of agent
1 (default) | positive scalar

Sample time of agent, specified as a positive scalar.

Within a Simulink environment, the agent gets executed every SampleTime seconds of simulation
time.

Within a MATLAB environment, the agent gets executed every time the environment advances.
However, SampleTime is the time interval between consecutive elements in the output experience
returned by sim or train.

DiscountFactor — Discount factor
0.99 (default) | positive scalar less than or equal to 1

Discount factor applied to future rewards during training, specified as a positive scalar less than or
equal to 1.

Object Functions
rlDQNAgent Deep Q-network reinforcement learning agent
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Examples

Create DQN Agent Options Object

This example shows how to create a DQN agent options object.

Create an rlDQNAgentOptions object that specifies the agent mini-batch size.

opt = rlDQNAgentOptions('MiniBatchSize',48)

opt = 
  rlDQNAgentOptions with properties:

                           UseDoubleDQN: 1
               EpsilonGreedyExploration: [1x1 rl.option.EpsilonGreedyExploration]
                     TargetSmoothFactor: 1.0000e-03
                  TargetUpdateFrequency: 1
    ResetExperienceBufferBeforeTraining: 1
          SaveExperienceBufferWithAgent: 0
                         SequenceLength: 1
                          MiniBatchSize: 48
                    NumStepsToLookAhead: 1
                 ExperienceBufferLength: 10000
                             SampleTime: 1
                         DiscountFactor: 0.9900

You can modify options using dot notation. For example, set the agent sample time to 0.5.

opt.SampleTime = 0.5;

Compatibility Considerations
Target update method settings for DQN agents have changed
Behavior changed in R2020a

Target update method settings for DQN agents have changed. The following changes require updates
to your code:

• The TargetUpdateMethod option has been removed. Now, DQN agents determine the target
update method based on the TargetUpdateFrequency and TargetSmoothFactor option
values.

• The default value of TargetUpdateFrequency has changed from 4 to 1.

To use one of the following target update methods, set the TargetUpdateFrequency and
TargetSmoothFactor properties as indicated.

Update Method TargetUpdateFrequency TargetSmoothFactor
Smoothing 1 Less than 1
Periodic Greater than 1 1
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Update Method TargetUpdateFrequency TargetSmoothFactor
Periodic smoothing (new
method in R2020a)

Greater than 1 Less than 1

The default target update configuration, which is a smoothing update with a TargetSmoothFactor
value of 0.001, remains the same.

Update Code

This table shows some typical uses of rlDQNAgentOptions and how to update your code to use the
new option configuration.

Not Recommended Recommended
opt = rlDQNAgentOptions('TargetUpdateMethod',"smoothing");opt = rlDQNAgentOptions;
opt = rlDQNAgentOptions('TargetUpdateMethod',"periodic");opt = rlDQNAgentOptions;

opt.TargetUpdateFrequency = 4;
opt.TargetSmoothFactor = 1;

opt = rlDQNAgentOptions;
opt.TargetUpdateMethod = "periodic";
opt.TargetUpdateFrequency = 5;

opt = rlDQNAgentOptions;
opt.TargetUpdateFrequency = 5;
opt.TargetSmoothFactor = 1;

References
[1] Sutton, Richard S., and Andrew G. Barto. Reinforcement Learning: An Introduction. Second

edition. Adaptive Computation and Machine Learning. Cambridge, Mass: The MIT Press,
2018.

See Also
Topics
“Deep Q-Network Agents”

Introduced in R2019a
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rlFiniteSetSpec
Create discrete action or observation data specifications for reinforcement learning environments

Description
An rlFiniteSetSpec object specifies discrete action or observation data specifications for
reinforcement learning environments.

Creation

Syntax
spec = rlFiniteSetSpec(elements)

Description

spec = rlFiniteSetSpec(elements) creates a data specification with a discrete set of actions or
observations, setting the Elements property.

Properties
Elements — Set of valid actions or observations
vector | cell array

Set of valid actions or observations for the environment, specified as one of the following:

• Vector — Specify valid numeric values for a single action or single observation.
• Cell array — Specify valid numeric value combinations when you have more than one action or

observation. Each entry of the cell array must have the same dimensions.

Name — Name of the rlFiniteSetSpec object
string (default)

Name of the rlFiniteSetSpec object, specified as a string. Use this property to set a meaningful
name for your finite set.

Description — Description of the rlFiniteSetSpec object
string (default)

Description of the rlFiniteSetSpec object, specified as a string. Use this property to specify a
meaningful description of the finite set values.

Dimension — Size of each element
vector (default)

This property is read-only.

Size of each element, specified as a vector.
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If you specify Elements as a vector, then Dimension is [1 1]. Otherwise, if you specify a cell array,
then Dimension indicates the size of the entries in Elements.

DataType — Information about the type of data
string (default)

This property is read-only.

Information about the type of data, specified as a string.

Object Functions
rlSimulinkEnv Create reinforcement learning environment using dynamic model implemented in

Simulink
rlFunctionEnv Specify custom reinforcement learning environment dynamics using functions
rlRepresentation (Not recommended) Model representation for reinforcement learning agents

Examples

Create Reinforcement Learning Environment for Simulink Model

For this example, consider the rlSimplePendulumModel Simulink model. The model is a simple
frictionless pendulum that initially hangs in a downward position.

Open the model.

mdl = 'rlSimplePendulumModel';
open_system(mdl)

Create rlNumericSpec and rlFiniteSetSpec objects for the observation and action information,
respectively.

obsInfo = rlNumericSpec([3 1]) % vector of 3 observations: sin(theta), cos(theta), d(theta)/dt

obsInfo = 
  rlNumericSpec with properties:

     LowerLimit: -Inf
     UpperLimit: Inf
           Name: [0x0 string]
    Description: [0x0 string]
      Dimension: [3 1]
       DataType: "double"

actInfo = rlFiniteSetSpec([-2 0 2]) % 3 possible values for torque: -2 Nm, 0 Nm and 2 Nm

actInfo = 
  rlFiniteSetSpec with properties:

       Elements: [3x1 double]
           Name: [0x0 string]
    Description: [0x0 string]
      Dimension: [1 1]
       DataType: "double"
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You can use dot notation to assign property values for the rlNumericSpec and rlFiniteSetSpec
objects.

obsInfo.Name = 'observations';
actInfo.Name = 'torque';

Assign the agent block path information, and create the reinforcement learning environment for the
Simulink model using the information extracted in the previous steps.

agentBlk = [mdl '/RL Agent'];
env = rlSimulinkEnv(mdl,agentBlk,obsInfo,actInfo)

env = 
SimulinkEnvWithAgent with properties:

           Model : rlSimplePendulumModel
      AgentBlock : rlSimplePendulumModel/RL Agent
        ResetFcn : []
  UseFastRestart : on

You can also include a reset function using dot notation. For this example, randomly initialize theta0
in the model workspace.

env.ResetFcn = @(in) setVariable(in,'theta0',randn,'Workspace',mdl)

env = 
SimulinkEnvWithAgent with properties:

           Model : rlSimplePendulumModel
      AgentBlock : rlSimplePendulumModel/RL Agent
        ResetFcn : @(in)setVariable(in,'theta0',randn,'Workspace',mdl)
  UseFastRestart : on

Specify Discrete Value Set for Multiple Actions

If the actor for your reinforcement learning agent has multiple outputs, each with a discrete action
space, you can specify the possible discrete actions combinations using an rlFiniteSetSpec object.

Suppose that the valid values for a two-output system are [1 2] for the first output and [10 20 30]
for the second output. Create a discrete action space specification for all possible input combinations.

actionSpec = rlFiniteSetSpec({[1 10],[1 20],[1 30],...
                              [2 10],[2 20],[2 30]})

actionSpec = 
  rlFiniteSetSpec with properties:

       Elements: {6x1 cell}
           Name: [0x0 string]
    Description: [0x0 string]
      Dimension: [1 2]
       DataType: "double"
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See Also
rlNumericSpec | rlSimulinkEnv | getActionInfo | getObservationInfo |
rlValueRepresentation | rlQValueRepresentation |
rlDeterministicActorRepresentation | rlStochasticActorRepresentation |
rlFunctionEnv

Introduced in R2019a
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rlFunctionEnv
Specify custom reinforcement learning environment dynamics using functions

Description
Use rlFunctionEnv to define a custom reinforcement learning environment. You provide MATLAB
functions that define the step and reset behavior for the environment. This object is useful when you
want to customize your environment beyond the predefined environments available with
rlPredefinedEnv.

Creation
Syntax
env = rlFunctionEnv(obsInfo,actInfo,stepfcn,resetfcn)

Description

env = rlFunctionEnv(obsInfo,actInfo,stepfcn,resetfcn) creates a reinforcement
learning environment using the provided observation and action specifications, obsInfo and
actInfo, respectively. You also set the StepFcn and ResetFcn properties using MATLAB functions.

Input Arguments

obsInfo — Observation specification
rlFiniteSetSpec object | rlNumericSpec object | array

Observation specification, specified as an rlFiniteSetSpec or rlNumericSpec object or an array
containing a mix of such objects. These objects define properties such as the dimensions, data types,
and names of the observation signals.

actInfo — Action specification
rlFiniteSetSpec object | rlNumericSpec object

Action specification, specified as an rlFiniteSetSpec or rlNumericSpec object. These objects
define properties such as the dimensions, data types, and names of the action signals.

Properties
StepFcn — Step behavior for the environment
function name | function handle | anonymous function handle

Step behavior for the environment, specified as a function name, function handle, or anonymous
function.

StepFcn is a function that you provide which describes how the environment advances to the next
state from a given action. When using a function name or function handle, this function must have
two inputs and four outputs, as illustrated by the following signature.
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[Observation,Reward,IsDone,LoggedSignals] = myStepFunction(Action,LoggedSignals)

To use additional input arguments beyond the required set, specify StepFcn using an anonymous
function handle.

The step function computes the values of the observation and reward for the given action in the
environment. The required input and output arguments are as follows.

• Action — Current action, which must match the dimensions and data type specified in actInfo.
• Observation — Returned observation, which must match the dimensions and data types
specified in obsInfo.

• Reward — Reward for the current step, returned as a scalar value.
• IsDone — Logical value indicating whether to end the simulation episode. The step function that

you define can include logic to decide whether to end the simulation based on the observation,
reward, or any other values.

• LoggedSignals — Any data that you want to pass from one step to the next, specified as a
structure.

For an example showing multiple ways to define a step function, see “Create MATLAB Environment
Using Custom Functions”.

ResetFcn — Reset behavior for the environment
function name | function handle | anonymous function handle

Reset behavior for the environment, specified as a function, function handle, or anonymous function
handle.

The reset function that you provide must have no inputs and two outputs, as illustrated by the
following signature.

[InitialObservation,LoggedSignals] = myResetFunction

To use input arguments with your reset function, specify ResetFcn using an anonymous function
handle.

The reset function sets the environment to an initial state and computes the initial values of the
observation signals. For example, you can create a reset function that randomizes certain state
values, such that each training episode begins from different initial conditions.

The sim function calls the reset function to reset the environment at the start of each simulation, and
the train function calls it at the start of each training episode.

The InitialObservation output must match the dimensions and data type of obsInfo.

To pass information from the reset condition into the first step, specify that information in the reset
function as the output structure LoggedSignals.

For an example showing multiple ways to define a reset function, see “Create MATLAB Environment
Using Custom Functions”.

LoggedSignals — Information to pass to next step
structure

Information to pass to the next step, specified as a structure. When you create the environment,
whatever you define as the LoggedSignals output of ResetFcn initializes this property. When a
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step occurs, the software populates this property with data to pass to the next step, as defined in
StepFcn.

Object Functions
getActionInfo Obtain action data specifications from reinforcement learning environment or

agent
getObservationInfo Obtain observation data specifications from reinforcement learning

environment or agent
train Train reinforcement learning agents within a specified environment
sim Simulate trained reinforcement learning agents within specified environment
validateEnvironment Validate custom reinforcement learning environment

Examples

Create Custom MATLAB Environment

Create a reinforcement learning environment by supplying custom dynamic functions in MATLAB®.
Using rlFunctionEnv, you can create a MATLAB reinforcement learning environment from an
observation specification, action specification, and step and reset functions that you define.

For this example, create an environment that represents a system for balancing a cart on a pole. The
observations from the environment are the cart position, cart velocity, pendulum angle, and
pendulum angle derivative. (For additional details about this environment, see “Create MATLAB
Environment Using Custom Functions”.) Create an observation specification for those signals.

oinfo = rlNumericSpec([4 1]);
oinfo.Name = 'CartPole States';
oinfo.Description = 'x, dx, theta, dtheta';

The environment has a discrete action space where the agent can apply one of two possible force
values to the cart, –10 N or 10 N. Create the action specification for those actions.

ActionInfo = rlFiniteSetSpec([-10 10]);
ActionInfo.Name = 'CartPole Action';

Next, specify the custom step and reset functions. For this example, use the supplied functions
myResetFunction.m and myStepFunction.m. For details about these functions and how they are
constructed, see “Create MATLAB Environment Using Custom Functions”.

Construct the custom environment using the defined observation specification, action specification,
and function names.

env = rlFunctionEnv(oinfo,ActionInfo,'myStepFunction','myResetFunction');

You can create agents for env and train them within the environment as you would for any other
reinforcement learning environment.

As an alternative to using function names, you can specify the functions as function handles. For
more details and an example, see “Create MATLAB Environment Using Custom Functions”.

See Also
rlPredefinedEnv | rlCreateEnvTemplate
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Topics
“Create MATLAB Environment Using Custom Functions”

Introduced in R2019a
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rlMDPEnv
Create Markov decision process environment for reinforcement learning

Description
A Markov decision process (MDP) is a discrete time stochastic control process. It provides a
mathematical framework for modeling decision making in situations where outcomes are partly
random and partly under the control of the decision maker. MDPs are useful for studying optimization
problems solved using reinforcement learning. Use rlMDPEnv to create a Markov decision process
environment for reinforcement learning in MATLAB.

Creation

Syntax
env = rlMDPEnv(MDP)

Description

env = rlMDPEnv(MDP) creates a reinforcement learning environment env with the specified MDP
model.

Input Arguments

MDP — Markov decision process model
GridWorld object | GenericMDP object

Markov decision process model, specified as one of the following:

• GridWorld object created using createGridWorld.
• GenericMDP object created using createMDP.

Properties
Model — Markov decision process model
GridWorld object | GenericMDP object

Markov decision process model, specified as a GridWorld object or GenericMDP object.

ResetFcn — Reset function
function handle

Reset function, specified as a function handle.
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Object Functions
getActionInfo Obtain action data specifications from reinforcement learning environment or

agent
getObservationInfo Obtain observation data specifications from reinforcement learning

environment or agent
sim Simulate trained reinforcement learning agents within specified environment
train Train reinforcement learning agents within a specified environment
validateEnvironment Validate custom reinforcement learning environment

Examples

Create Grid World Environment

For this example, consider a 5-by-5 grid world with the following rules:

1 A 5-by-5 grid world bounded by borders, with 4 possible actions (North = 1, South = 2, East = 3,
West = 4).

2 The agent begins from cell [2,1] (second row, first column).
3 The agent receives reward +10 if it reaches the terminal state at cell [5,5] (blue).
4 The environment contains a special jump from cell [2,4] to cell [4,4] with +5 reward.
5 The agent is blocked by obstacles in cells [3,3], [3,4], [3,5] and [4,3] (black cells).
6 All other actions result in -1 reward.

First, create a GridWorld object using the createGridWorld function.

GW = createGridWorld(5,5)

GW = 
  GridWorld with properties:
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          GridSize: [5 5]
      CurrentState: "[1,1]"
            States: [25x1 string]
           Actions: [4x1 string]
                 T: [25x25x4 double]
                 R: [25x25x4 double]
    ObstacleStates: [0x1 string]
    TerminalStates: [0x1 string]

Now, set the initial, terminal and obstacle states.

GW.CurrentState = '[2,1]';
GW.TerminalStates = '[5,5]';
GW.ObstacleStates = ["[3,3]";"[3,4]";"[3,5]";"[4,3]"];

Update the state transition matrix for the obstacle states and set the jump rule over the obstacle
states.

updateStateTranstionForObstacles(GW)
GW.T(state2idx(GW,"[2,4]"),:,:) = 0;
GW.T(state2idx(GW,"[2,4]"),state2idx(GW,"[4,4]"),:) = 1;

Next, define the rewards in the reward transition matrix.

nS = numel(GW.States);
nA = numel(GW.Actions);
GW.R = -1*ones(nS,nS,nA);
GW.R(state2idx(GW,"[2,4]"),state2idx(GW,"[4,4]"),:) = 5;
GW.R(:,state2idx(GW,GW.TerminalStates),:) = 10;

Now, use rlMDPEnv to create a grid world environment using the GridWorld object GW.

env = rlMDPEnv(GW)

env = 
  rlMDPEnv with properties:

       Model: [1x1 rl.env.GridWorld]
    ResetFcn: []

You can visualize the grid world environment using the plot function.

plot(env)
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See Also
createGridWorld | rlPredefinedEnv

Topics
“Train Reinforcement Learning Agent in Basic Grid World”
“Create Custom Grid World Environments”
“Train Reinforcement Learning Agent in MDP Environment”

Introduced in R2019a
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rlNumericSpec
Create continuous action or observation data specifications for reinforcement learning environments

Description
An rlNumericSpec object specifies continuous action or observation data specifications for
reinforcement learning environments.

Creation

Syntax
spec = rlNumericSpec(dimension)
spec = rlNumericSpec(dimension,Name,Value)

Description

spec = rlNumericSpec(dimension) creates a data specification for continuous actions or
observations and sets the Dimension property.

spec = rlNumericSpec(dimension,Name,Value) sets “Properties” on page 3-69 using name-
value pair arguments.

Properties
LowerLimit — Lower limit of the data space
'-inf' (default) | scalar | matrix

Lower limit of the data space, specified as a scalar or matrix of the same size as the data space. When
LowerLimit is specified as a scalar, rlNumericSpec applies it to all entries in the data space.

UpperLimit — Upper limit of the data space
'inf' (default) | scalar | matrix

Upper limit of the data space, specified as a scalar or matrix of the same size as the data space. When
UpperLimit is specified as a scalar, rlNumericSpec applies it to all entries in the data space.

Name — Name of the rlNumericSpec object
string (default)

Name of the rlNumericSpec object, specified as a string.

Description — Description of the rlNumericSpec object
string (default)

Description of the rlNumericSpec object, specified as a string.

 rlNumericSpec

3-69



Dimension — Dimension of the data space
numeric vector (default)

This property is read-only.

Dimension of the data space, specified as a numeric vector.

DataType — Information about the type of data
string (default)

This property is read-only.

Information about the type of data, specified as a string.

Object Functions
rlSimulinkEnv Create reinforcement learning environment using dynamic model implemented in

Simulink
rlFunctionEnv Specify custom reinforcement learning environment dynamics using functions
rlRepresentation (Not recommended) Model representation for reinforcement learning agents

Examples

Create Reinforcement Learning Environment for Simulink Model

For this example, consider the rlSimplePendulumModel Simulink model. The model is a simple
frictionless pendulum that initially hangs in a downward position.

Open the model.

mdl = 'rlSimplePendulumModel';
open_system(mdl)

Create rlNumericSpec and rlFiniteSetSpec objects for the observation and action information,
respectively.

obsInfo = rlNumericSpec([3 1]) % vector of 3 observations: sin(theta), cos(theta), d(theta)/dt

obsInfo = 
  rlNumericSpec with properties:

     LowerLimit: -Inf
     UpperLimit: Inf
           Name: [0x0 string]
    Description: [0x0 string]
      Dimension: [3 1]
       DataType: "double"

actInfo = rlFiniteSetSpec([-2 0 2]) % 3 possible values for torque: -2 Nm, 0 Nm and 2 Nm

actInfo = 
  rlFiniteSetSpec with properties:

       Elements: [3x1 double]
           Name: [0x0 string]
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    Description: [0x0 string]
      Dimension: [1 1]
       DataType: "double"

You can use dot notation to assign property values for the rlNumericSpec and rlFiniteSetSpec
objects.

obsInfo.Name = 'observations';
actInfo.Name = 'torque';

Assign the agent block path information, and create the reinforcement learning environment for the
Simulink model using the information extracted in the previous steps.

agentBlk = [mdl '/RL Agent'];
env = rlSimulinkEnv(mdl,agentBlk,obsInfo,actInfo)

env = 
SimulinkEnvWithAgent with properties:

           Model : rlSimplePendulumModel
      AgentBlock : rlSimplePendulumModel/RL Agent
        ResetFcn : []
  UseFastRestart : on

You can also include a reset function using dot notation. For this example, randomly initialize theta0
in the model workspace.

env.ResetFcn = @(in) setVariable(in,'theta0',randn,'Workspace',mdl)

env = 
SimulinkEnvWithAgent with properties:

           Model : rlSimplePendulumModel
      AgentBlock : rlSimplePendulumModel/RL Agent
        ResetFcn : @(in)setVariable(in,'theta0',randn,'Workspace',mdl)
  UseFastRestart : on

See Also
rlFiniteSetSpec | rlSimulinkEnv | getActionInfo | getObservationInfo |
rlValueRepresentation | rlQValueRepresentation |
rlDeterministicActorRepresentation | rlStochasticActorRepresentation |
rlFunctionEnv

Topics
“Train DDPG Agent for Adaptive Cruise Control”

Introduced in R2019a
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rlPGAgent
Policy gradient reinforcement learning agent

Description
The policy gradient (PG) algorithm is a model-free, online, on-policy reinforcement learning method.
A PG agent is a policy-based reinforcement learning agent that uses the REINFORCE algorithm to
directly compute an optimal policy which maximizes the long-term reward. The action space can be
either discrete or continuous.

For more information on PG agents and the REINFORCE algorithm, see “Policy Gradient Agents”. For
more information on the different types of reinforcement learning agents, see “Reinforcement
Learning Agents”.

Creation

Syntax
agent = rlPGAgent(observationInfo,actionInfo)
agent = rlPGAgent(observationInfo,actionInfo,initOpts)

agent = rlPGAgent(actor)
agent = rlPGAgent(actor,critic)

agent = rlPGAgent( ___ ,agentOptions)

Description
Create Agent from Observation and Action Specifications

agent = rlPGAgent(observationInfo,actionInfo) creates a policy gradient agent for an
environment with the given observation and action specifications, using default initialization options.
The actor and critic representations in the agent use default deep neural networks built from the
observation specification observationInfo and the action specification actionInfo.

agent = rlPGAgent(observationInfo,actionInfo,initOpts) creates a policy gradient
agent for an environment with the given observation and action specifications. The agent uses default
networks in which each hidden fully connected layer has the number of units specified in the
initOpts object. Policy gradient agents do not support recurrent neural networks. For more
information on the initialization options, see rlAgentInitializationOptions.

Create Agent from Actor and Critic Representations

agent = rlPGAgent(actor) creates a PG agent with the specified actor network. By default, the
UseBaseline property of the agent is false in this case.

agent = rlPGAgent(actor,critic) creates a PG agent with the specified actor and critic
networks. By default, the UseBaseline option is true in this case.
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Specify Agent Options

agent = rlPGAgent( ___ ,agentOptions) creates a PG agent and sets the AgentOptions
property to the agentOptions input argument. Use this syntax after any of the input arguments in
the previous syntaxes.

Input Arguments

observationInfo — Observation specifications
specification object | array of specification objects

Observation specifications, specified as a reinforcement learning specification object or an array of
specification objects defining properties such as dimensions, data type, and names of the observation
signals.

You can extract observationInfo from an existing environment or agent using
getObservationInfo. You can also construct the specifications manually using rlFiniteSetSpec
or rlNumericSpec.

actionInfo — Action specification
specification object

Action specifications, specified as a reinforcement learning specification object defining properties
such as dimensions, data type, and names of the action signals.

For a discrete action space, you must specify actionInfo as an rlFiniteSetSpec object.

For a continuous action space, you must specify actionInfo as an rlNumericSpec object.

You can extract actionInfo from an existing environment or agent using getActionInfo. You can
also construct the specification manually using rlFiniteSetSpec or rlNumericSpec.

initOpts — Agent initialization options
rlAgentInitializationOptions object

Agent initialization options, specified as an rlAgentInitializationOptions object. Policy
gradient agents do not support recurrent neural networks.

actor — Actor network representation
rlStochasticActorRepresentation object

Actor network representation, specified as an rlStochasticActorRepresentation. For more
information on creating actor representations, see “Create Policy and Value Function
Representations”.

critic — Critic network representation
rlValueRepresentation object

Critic network representation, specified as an rlValueRepresentation object. For more
information on creating critic representations, see “Create Policy and Value Function
Representations”.

 rlPGAgent

3-73



Properties
AgentOptions — Agent options
rlPGAgentOptions object

Agent options, specified as an rlPGAgentOptions object.

Object Functions
train Train reinforcement learning agents within a specified environment
sim Simulate trained reinforcement learning agents within specified

environment
getAction Obtain action from agent or actor representation given environment

observations
getActor Get actor representation from reinforcement learning agent
setActor Set actor representation of reinforcement learning agent
getCritic Get critic representation from reinforcement learning agent
setCritic Set critic representation of reinforcement learning agent
generatePolicyFunction Create function that evaluates trained policy of reinforcement learning

agent

Examples

Create Discrete Policy Gradient Agent from Observation and Action Specifications

Create an environment with a discrete action space, and obtain its observation and action
specifications. For this example, load the environment used in the example “Create Agent Using Deep
Network Designer and Train Using Image Observations”. This environment has two observations: a
50-by-50 grayscale image and a scalar (the angular velocity of the pendulum). The action is a scalar
with five possible elements (a torque of either -2, -1, 0, 1, or 2 Nm applied to the pole).

% load predefined environment
env = rlPredefinedEnv("SimplePendulumWithImage-Discrete");

% obtain observation and action specifications
obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

The agent creation function initializes the actor and critic networks randomly. You can ensure
reproducibility by fixing the seed of the random generator. To do so, uncomment the following line.

% rng(0)

Create a policy gradient agent from the environment observation and action specifications.

agent = rlPGAgent(obsInfo,actInfo);

To check your agent, use getAction to return the action from a random observation.

getAction(agent,{rand(obsInfo(1).Dimension),rand(obsInfo(2).Dimension)})

ans = 1x1 cell array
    {[-2]}
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You can now test and train the agent within the environment.

Create Continuous Policy Gradient Agent Using Initialization Options

Create an environment with a continuous action space and obtain its observation and action
specifications. For this example, load the environment used in the example “Train DDPG Agent to
Swing Up and Balance Pendulum with Image Observation”. This environment has two observations: a
50-by-50 grayscale image and a scalar (the angular velocity of the pendulum). The action is a scalar
representing a torque ranging continuously from -2 to 2 Nm.

% load predefined environment
env = rlPredefinedEnv("SimplePendulumWithImage-Continuous");

% obtain observation and action specifications
obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

Create an agent initialization option object, specifying that each hidden fully connected layer in the
network must have 128 neurons (instead of the default number, 256). Policy gradient agents do not
support recurrent networks, so setting the UseRNN option to true generates an error when the agent
is created.

initOpts = rlAgentInitializationOptions('NumHiddenUnit',128);

The agent creation function initializes the actor and critic networks randomly. You can ensure
reproducibility by fixing the seed of the random generator. To do so, uncomment the following line.

% rng(0)

Create a policy gradient agent from the environment observation and action specifications.

agent = rlPGAgent(obsInfo,actInfo,initOpts);

Reduce the critic learning rate to 1e-3.

critic = getCritic(agent);
critic.Options.LearnRate = 1e-3;
agent  = setCritic(agent,critic);

Extract the deep neural networks from both the agent actor and critic.

actorNet = getModel(getActor(agent));
criticNet = getModel(getCritic(agent));

Display the layers of the critic network, and verify that each hidden fully connected layer has 128
neurons

criticNet.Layers

ans = 
  11x1 Layer array with layers:

     1   'input_1'        Image Input       50x50x1 images
     2   'conv_1'         Convolution       64 3x3x1 convolutions with stride [1  1] and padding [0  0  0  0]
     3   'relu_input_1'   ReLU              ReLU
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     4   'fc_1'           Fully Connected   128 fully connected layer
     5   'input_2'        Feature Input     1 features
     6   'fc_2'           Fully Connected   128 fully connected layer
     7   'concat'         Concatenation     Concatenation of 2 inputs along dimension 1
     8   'relu_body'      ReLU              ReLU
     9   'fc_body'        Fully Connected   128 fully connected layer
    10   'body_output'    ReLU              ReLU
    11   'output'         Fully Connected   1 fully connected layer

Plot actor and critic networks

plot(layerGraph(actorNet))

plot(layerGraph(criticNet))
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To check your agent, use getAction to return the action from a random observation.

getAction(agent,{rand(obsInfo(1).Dimension),rand(obsInfo(2).Dimension)})

ans = 1x1 cell array
    {[0.9228]}

You can now test and train the agent within the environment.

Create a Discrete PG Agent from Actor and Baseline Critic

Create an environment with a discrete action space, and obtain its observation and action
specifications. For this example, load the environment used in the example “Train PG Agent with
Baseline to Control Double Integrator System”. The observation from the environment is a vector
containing the position and velocity of a mass. The action is a scalar representing a force, applied to
the mass, having three possible values (-2, 0, or 2 Newton).

% load predefined environment
env = rlPredefinedEnv("DoubleIntegrator-Discrete");

% get observation and specification info
obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);
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Create a critic representation to use as a baseline.

% create a network to be used as underlying critic approximator
baselineNetwork = [
    imageInputLayer([obsInfo.Dimension(1) 1 1], 'Normalization', 'none', 'Name', 'state')
    fullyConnectedLayer(8, 'Name', 'BaselineFC')
    reluLayer('Name', 'CriticRelu1')
    fullyConnectedLayer(1, 'Name', 'BaselineFC2', 'BiasLearnRateFactor', 0)];

% set some options for the critic
baselineOpts = rlRepresentationOptions('LearnRate',5e-3,'GradientThreshold',1);

% create the critic based on the network approximator
baseline = rlValueRepresentation(baselineNetwork,obsInfo,'Observation',{'state'},baselineOpts);

Create an actor representation.

% create a network to be used as underlying actor approximator
actorNetwork = [
    imageInputLayer([obsInfo.Dimension(1) 1 1], 'Normalization', 'none', 'Name', 'state')
    fullyConnectedLayer(numel(actInfo.Elements), 'Name', 'action', 'BiasLearnRateFactor', 0)];

% set some options for the actor
actorOpts = rlRepresentationOptions('LearnRate',5e-3,'GradientThreshold',1);

% create the actor based on the network approximator
actor = rlStochasticActorRepresentation(actorNetwork,obsInfo,actInfo,...
    'Observation',{'state'},actorOpts);

Specify agent options, and create a PG agent using the environment, actor, and critic.

agentOpts = rlPGAgentOptions(...
    'UseBaseline',true, ...
    'DiscountFactor', 0.99);
agent = rlPGAgent(actor,baseline,agentOpts)

agent = 
  rlPGAgent with properties:

    AgentOptions: [1x1 rl.option.rlPGAgentOptions]

To check your agent, use getAction to return the action from a random observation.

getAction(agent,{rand(2,1)})

ans = 1x1 cell array
    {[-2]}

You can now test and train the agent within the environment.
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Create a Continuous PG Agent from Actor and Baseline Critic

Create an environment with a continuous action space, and obtain its observation and action
specifications. For this example, load the double integrator continuous action space environment used
in the example “Train DDPG Agent to Control Double Integrator System”.

% load predefined environment
env = rlPredefinedEnv("DoubleIntegrator-Continuous");

% get observation specification info
obsInfo = getObservationInfo(env)

obsInfo = 
  rlNumericSpec with properties:

     LowerLimit: -Inf
     UpperLimit: Inf
           Name: "states"
    Description: "x, dx"
      Dimension: [2 1]
       DataType: "double"

% get action specification info
actInfo = getActionInfo(env)

actInfo = 
  rlNumericSpec with properties:

     LowerLimit: -Inf
     UpperLimit: Inf
           Name: "force"
    Description: [0x0 string]
      Dimension: [1 1]
       DataType: "double"

In this example, the action is a scalar input representing a force ranging from -2 to 2 Newton, so it is
a good idea to set the upper and lower limit of the action signal accordingly. This must be done when
the network representation for the actor has an nonlinear output layer than needs to be scaled
accordingly to produce an output in the desired range.

% make sure action space upper and lower limits are finite
actInfo.LowerLimit=-2;
actInfo.UpperLimit=2;

Create a critic representation to use as a baseline. Policy gradient agents use a
rlValueRepresentation for the baseline. For continuous observation spaces, you can use either a
deep neural network or a custom basis representation. For this example, create a deep neural
network as the underlying approximator.

% create a network to be used as underlying critic approximator
baselineNetwork = [
    imageInputLayer([obsInfo.Dimension 1], 'Normalization', 'none', 'Name', 'state')
    fullyConnectedLayer(8, 'Name', 'BaselineFC1')
    reluLayer('Name', 'Relu1')
    fullyConnectedLayer(1, 'Name', 'BaselineFC2', 'BiasLearnRateFactor', 0)];
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% set some training options for the critic
baselineOpts = rlRepresentationOptions('LearnRate',5e-3,'GradientThreshold',1);

% create the critic based on the network approximator
baseline = rlValueRepresentation(baselineNetwork,obsInfo,'Observation',{'state'},baselineOpts);

Policy gradient agents use a rlStochasticActorRepresentation. For continuous action spaces
stochastic actors, you can only use a neural network as underlying approximator.

The observation input (here called myobs) must accept a two-dimensional vector, as specified in
obsInfo. The output (here called myact) must also be a two-dimensional vector (twice the number
of dimensions specified in actInfo). The elements of the output vector represent, in sequence, all
the means and all the standard deviations of every action (in this case there is only one mean value
and one standard deviation).

The fact that standard deviations must be non-negative while mean values must fall within the output
range means that the network must have two separate paths. The first path is for the mean values,
and any output nonlinearity must be scaled so that it can produce outputs in the output range. The
second path is for the variances, and you must use a softplus or relu layer to enforce non-negativity.

% input path layers (2 by 1 input, 1 by 1 output)
inPath = [ 
    imageInputLayer([obsInfo.Dimension 1], 'Normalization','none','Name','state')
    fullyConnectedLayer(10,'Name', 'ip_fc')   % 10 by 1 output
    reluLayer('Name', 'ip_relu')              % nonlinearity
    fullyConnectedLayer(1,'Name','ip_out') ]; % 1 by 1 output

% path layers for mean value (1 by 1 input and 1 by 1 output)
% using scalingLayer to scale the range
meanPath = [
    fullyConnectedLayer(15,'Name', 'mp_fc1') % 15 by 1 output
    reluLayer('Name', 'mp_relu')             % nonlinearity
    fullyConnectedLayer(1,'Name','mp_fc2');  % 1 by 1 output
    tanhLayer('Name','tanh');                % output range: (-1,1)
    scalingLayer('Name','mp_out','Scale',actInfo.UpperLimit) ]; % output range: (-2N,2N)

% path layers for standard deviation (1 by 1 input and output)
% using softplus layer to make it non negative
sdevPath = [
    fullyConnectedLayer(15,'Name', 'vp_fc1') % 15 by 1 output
    reluLayer('Name', 'vp_relu')             % nonlinearity
    fullyConnectedLayer(1,'Name','vp_fc2');  % 1 by 1 output
    softplusLayer('Name', 'vp_out') ];       % output range: (0,+Inf)

% conctatenate two inputs (along dimension #3) to form a single (2 by 1) output layer
outLayer = concatenationLayer(3,2,'Name','mean&sdev');

% add layers to layerGraph network object
actorNet = layerGraph(inPath);
actorNet = addLayers(actorNet,meanPath);
actorNet = addLayers(actorNet,sdevPath);
actorNet = addLayers(actorNet,outLayer);

% connect layers: the mean value path output MUST be connected to the FIRST input of the concatenation layer
actorNet = connectLayers(actorNet,'ip_out','mp_fc1/in');   % connect output of inPath to meanPath input
actorNet = connectLayers(actorNet,'ip_out','vp_fc1/in');   % connect output of inPath to variancePath input
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actorNet = connectLayers(actorNet,'mp_out','mean&sdev/in1');% connect output of meanPath to mean&sdev input #1
actorNet = connectLayers(actorNet,'vp_out','mean&sdev/in2');% connect output of sdevPath to mean&sdev input #2

% plot network 
plot(actorNet)

Specify some options for the actor and create the stochastic actor representation using the deep
neural network actorNet.

% set some options for the actor
actorOpts = rlRepresentationOptions('LearnRate',5e-3,'GradientThreshold',1);

% create the actor based on the network approximator
actor = rlStochasticActorRepresentation(actorNet,obsInfo,actInfo,...
    'Observation',{'state'},actorOpts);

Specify agent options, and create a PG agent using actor, baseline and agent options.

agentOpts = rlPGAgentOptions(...
    'UseBaseline',true, ...
    'DiscountFactor', 0.99);
agent = rlPGAgent(actor,baseline,agentOpts)

agent = 
  rlPGAgent with properties:

    AgentOptions: [1x1 rl.option.rlPGAgentOptions]
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To check your agent, use getAction to return the action from a random observation.

getAction(agent,{rand(2,1)})

ans = 1x1 cell array
    {[0.0347]}

You can now test and train the agent within the environment.

Create a Discrete PG Agent with Recurrent Neural Networks

For this example, load the environment used in the example “Train PG Agent with Baseline to Control
Double Integrator System”. The observation from the environment is a vector containing the position
and velocity of a mass. The action is a scalar representing a force, applied to the mass, having three
possible values (-2, 0, or 2 Newton).

env = rlPredefinedEnv("DoubleIntegrator-Discrete");

Get observation and specification information.

obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

Create a critic representation to use as a baseline. To create a recurrent neural network for the critic,
use sequenceInputLayer as the input layer and include an lstmLayer as one of the other network
layers.

baselineNetwork = [
    sequenceInputLayer(obsInfo.Dimension(1), 'Normalization', 'none', 'Name','myobs')
    fullyConnectedLayer(8, 'Name', 'BaselineFC')
    lstmLayer(8,'OutputMode','sequence','Name','lstm')
    reluLayer('Name', 'CriticRelu1')
    fullyConnectedLayer(1, 'Name', 'BaselineFC2', 'BiasLearnRateFactor', 0)];

Set some options for the critic.

baselineOpts = rlRepresentationOptions('LearnRate',5e-3,'GradientThreshold',1);

Create the critic based on the network approximator.

baseline = rlValueRepresentation(baselineNetwork,obsInfo,'Observation',{'myobs'},baselineOpts);

Create an actor representation. Since the critic has a recurrent network, the actor must have a
recurrent network too.

Define a recurrent neural network for the actor.

actorNetwork = [
    sequenceInputLayer(obsInfo.Dimension(1), 'Normalization', 'none', 'Name', 'myobs')
    lstmLayer(8,'OutputMode','sequence','Name','lstm')
    fullyConnectedLayer(numel(actInfo.Elements), 'Name', 'action', 'BiasLearnRateFactor', 0)];

Set actor options and create the actor.
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actorOpts = rlRepresentationOptions('LearnRate',5e-3,'GradientThreshold',1);
actor = rlStochasticActorRepresentation(actorNetwork,obsInfo,actInfo,...
    'Observation',{'myobs'},actorOpts);

Specify agent options, and create a PG agent using the environment, actor, and critic.

agentOpts = rlPGAgentOptions(...
    'UseBaseline',true, ...
    'DiscountFactor', 0.99);
agent = rlPGAgent(actor,baseline,agentOpts);

For PG agent with recurrent neural networks, the training sequence length is the whole episode.

To check your agent, use getAction to return the action from a random observation.

getAction(agent,{obsInfo.Dimension})

ans = 1×1 cell array
    {[0]}

You can now test and train the agent within the environment.

Tips
• For continuous action spaces, the rlPGAgent agent does not enforce the constraints set by the

action specification, so you must enforce action space constraints within the environment.

See Also
rlAgentInitializationOptions | rlPGAgentOptions |
rlStochasticActorRepresentation | rlValueRepresentation | Deep Network Designer

Topics
“Policy Gradient Agents”
“Reinforcement Learning Agents”
“Train Reinforcement Learning Agents”

Introduced in R2019a
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rlPGAgentOptions
Options for PG agent

Description
Use an rlPGAgentOptions object to specify options for policy gradient (PG) agents. To create a PG
agent, use rlPGAgent

For more information on PG agents, see “Policy Gradient Agents”.

For more information on the different types of reinforcement learning agents, see “Reinforcement
Learning Agents”.

Creation

Syntax
opt = rlPGAgentOptions
opt = rlPGAgentOptions(Name,Value)

Description

opt = rlPGAgentOptions creates an rlPGAgentOptions object for use as an argument when
creating a PG agent using all default settings. You can modify the object properties using dot
notation.

opt = rlPGAgentOptions(Name,Value) sets option properties on page 3-84 using name-value
pairs. For example, rlPGAgentOptions('DiscountFactor',0.95) creates an option set with a
discount factor of 0.95. You can specify multiple name-value pairs. Enclose each property name in
quotes.

Properties
UseBaseline — Use baseline for learning
true (default) | false

Option to use baseline for learning, specified as a logical value. When UseBaseline is true, you
must specify a critic network as the baseline function approximator.

In general, for simpler problems with smaller actor networks, PG agents work better without a
baseline.

UseDeterministicExploitation — Use action with maximum likelihood
false (default) | true

Option to return the action with maximum likelihood for simulation and policy generation, specified
as a logical value. When UseDeterministicExploitation is set to true, the action with
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maximum likelihood is always used in sim and generatePolicyFunction, which causes the agent
to behave deterministically.

When UseDeterministicExploitation is set to false, the agent samples actions from
probability distributions, which causes the agent to behave stochastically.

SampleTime — Sample time of agent
1 (default) | positive scalar

Sample time of agent, specified as a positive scalar.

Within a Simulink environment, the agent gets executed every SampleTime seconds of simulation
time.

Within a MATLAB environment, the agent gets executed every time the environment advances.
However, SampleTime is the time interval between consecutive elements in the output experience
returned by sim or train.

DiscountFactor — Discount factor
0.99 (default) | positive scalar less than or equal to 1

Discount factor applied to future rewards during training, specified as a positive scalar less than or
equal to 1.

EntropyLossWeight — Entropy loss weight
0 (default) | scalar value between 0 and 1

Entropy loss weight, specified as a scalar value between 0 and 1. A higher entropy loss weight value
promotes agent exploration by applying a penalty for being too certain about which action to take.
Doing so can help the agent move out of local optima.

When gradients are computed during training, an additional gradient component is computed for
minimizing this loss function.

Object Functions
rlPGAgent Policy gradient reinforcement learning agent

Examples

Create PG Agent Options Object

This example shows how to create and modify a PG agent options object.

Create a PG agent options object, specifying the discount factor.

opt = rlPGAgentOptions('DiscountFactor',0.9)

opt = 
  rlPGAgentOptions with properties:

                     UseBaseline: 1
               EntropyLossWeight: 0
    UseDeterministicExploitation: 0
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                      SampleTime: 1
                  DiscountFactor: 0.9000

You can modify options using dot notation. For example, set the agent sample time to 0.5.

opt.SampleTime = 0.5;

See Also
Topics
“Policy Gradient Agents”

Introduced in R2019a
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rlPPOAgent
Proximal policy optimization reinforcement learning agent

Description
Proximal policy optimization (PPO) is a model-free, online, on-policy, policy gradient reinforcement
learning method. This algorithm alternates between sampling data through environmental interaction
and optimizing a clipped surrogate objective function using stochastic gradient descent. The action
space can be either discrete or continuous.

For more information on PPO agents, see “Proximal Policy Optimization Agents”. For more
information on the different types of reinforcement learning agents, see “Reinforcement Learning
Agents”.

Creation

Syntax
agent = rlPPOAgent(observationInfo,actionInfo)
agent = rlPPOAgent(observationInfo,actionInfo,initOpts)

agent = rlPPOAgent(actor,critic)

agent = rlPPOAgent( ___ ,agentOptions)

Description

Create Agent from Observation and Action Specifications

agent = rlPPOAgent(observationInfo,actionInfo) creates a proximal policy optimization
(PPO) agent for an environment with the given observation and action specifications, using default
initialization options. The actor and critic representations in the agent use default deep neural
networks built from the observation specification observationInfo and the action specification
actionInfo.

agent = rlPPOAgent(observationInfo,actionInfo,initOpts) creates a PPO agent for an
environment with the given observation and action specifications. The agent uses default networks
configured using options specified in the initOpts object. Actor-critic agents do not support
recurrent neural networks. For more information on the initialization options, see
rlAgentInitializationOptions.

Create Agent from Actor and Critic Representations

agent = rlPPOAgent(actor,critic) creates a PPO agent with the specified actor and critic,
using the default options for the agent.
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Specify Agent Options

agent = rlPPOAgent( ___ ,agentOptions) creates a PPO agent and sets the AgentOptions
property to the agentOptions input argument. Use this syntax after any of the input arguments in
the previous syntaxes.

Input Arguments

observationInfo — Observation specifications
specification object | array of specification objects

Observation specifications, specified as a reinforcement learning specification object or an array of
specification objects defining properties such as dimensions, data type, and names of the observation
signals.

You can extract observationInfo from an existing environment or agent using
getObservationInfo. You can also construct the specifications manually using rlFiniteSetSpec
or rlNumericSpec.

actionInfo — Action specification
specification object

Action specifications, specified as a reinforcement learning specification object defining properties
such as dimensions, data type, and names of the action signals.

For a discrete action space, you must specify actionInfo as an rlFiniteSetSpec object.

For a continuous action space, you must specify actionInfo as an rlNumericSpec object.

You can extract actionInfo from an existing environment or agent using getActionInfo. You can
also construct the specification manually using rlFiniteSetSpec or rlNumericSpec.

initOpts — Agent initialization options
rlAgentInitializationOptions object

Agent initialization options, specified as an rlAgentInitializationOptions object.

actor — Actor network representation
rlStochasticActorRepresentation object

Actor network representation for the policy, specified as an rlStochasticActorRepresentation
object. For more information on creating actor representations, see “Create Policy and Value
Function Representations”.

Your actor representation can use a recurrent neural network as its function approximator. In this
case, your critic must also use a recurrent neural network. For an example, see “Create PPO Agent
with Recurrent Neural Networks” on page 3-97.

critic — Critic network representation
rlValueRepresentation object

Critic network representation for estimating the discounted long-term reward, specified as an
rlValueRepresentation. For more information on creating critic representations, see “Create
Policy and Value Function Representations”.
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Your critic representation can use a recurrent neural network as its function approximator. In this
case, your actor must also use a recurrent neural network. For an example, see “Create PPO Agent
with Recurrent Neural Networks” on page 3-97.

Properties
AgentOptions — Agent options
rlPPOAgentOptions object

Agent options, specified as an rlPPOAgentOptions object.

Object Functions
train Train reinforcement learning agents within a specified environment
sim Simulate trained reinforcement learning agents within specified

environment
getAction Obtain action from agent or actor representation given environment

observations
getActor Get actor representation from reinforcement learning agent
setActor Set actor representation of reinforcement learning agent
getCritic Get critic representation from reinforcement learning agent
setCritic Set critic representation of reinforcement learning agent
generatePolicyFunction Create function that evaluates trained policy of reinforcement learning

agent

Examples

Create Discrete PPO Agent from Observation and Action Specifications

Create an environment with a discrete action space, and obtain its observation and action
specifications. For this example, load the environment used in the example “Create Agent Using Deep
Network Designer and Train Using Image Observations”. This environment has two observations: a
50-by-50 grayscale image and a scalar (the angular velocity of the pendulum). The action is a scalar
with five possible elements (a torque of either -2, -1, 0, 1, or 2 Nm applied to a swinging pole).

% load predefined environment
env = rlPredefinedEnv("SimplePendulumWithImage-Discrete");

Obtain observation and action specifications from the environment.

obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

The agent creation function initializes the actor and critic networks randomly. You can ensure
reproducibility by fixing the seed of the random generator. To do so, uncomment the following line.

% rng(0)

Create a PPO agent from the environment observation and action specifications.

agent = rlPPOAgent(obsInfo,actInfo);

To check your agent, use getAction to return the action from a random observation.

 rlPPOAgent

3-89



getAction(agent,{rand(obsInfo(1).Dimension),rand(obsInfo(2).Dimension)})

ans = 1x1 cell array
    {[-2]}

You can now test and train the agent within the environment.

Create Continuous PPO Agent Using Initialization Options

Create an environment with a continuous action space and obtain its observation and action
specifications. For this example, load the environment used in the example “Train DDPG Agent to
Swing Up and Balance Pendulum with Image Observation”. This environment has two observations: a
50-by-50 grayscale image and a scalar (the angular velocity of the pendulum). The action is a scalar
representing a torque ranging continuously from -2 to 2 Nm.

% load predefined environment
env = rlPredefinedEnv("SimplePendulumWithImage-Continuous");

% obtain observation and action specifications
obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

Create an agent initialization option object, specifying that each hidden fully connected layer in the
network must have 128 neurons (instead of the default number, 256).

initOpts = rlAgentInitializationOptions('NumHiddenUnit',128);

The agent creation function initializes the actor and critic networks randomly. You can ensure
reproducibility by fixing the seed of the random generator. To do so, uncomment the following line.

% rng(0)

Create a PPO actor-critic agent from the environment observation and action specifications.

agent = rlPPOAgent(obsInfo,actInfo,initOpts);

Reduce the critic learning rate to 1e-3.

critic = getCritic(agent);
critic.Options.LearnRate = 1e-3;
agent  = setCritic(agent,critic);

Extract the deep neural networks from both the agent actor and critic.

actorNet = getModel(getActor(agent));
criticNet = getModel(getCritic(agent));

Display the layers of the critic network, and verify that each hidden fully connected layer has 128
neurons

criticNet.Layers

ans = 
  11x1 Layer array with layers:
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     1   'input_1'        Image Input       50x50x1 images
     2   'conv_1'         Convolution       64 3x3x1 convolutions with stride [1  1] and padding [0  0  0  0]
     3   'relu_input_1'   ReLU              ReLU
     4   'fc_1'           Fully Connected   128 fully connected layer
     5   'input_2'        Feature Input     1 features
     6   'fc_2'           Fully Connected   128 fully connected layer
     7   'concat'         Concatenation     Concatenation of 2 inputs along dimension 1
     8   'relu_body'      ReLU              ReLU
     9   'fc_body'        Fully Connected   128 fully connected layer
    10   'body_output'    ReLU              ReLU
    11   'output'         Fully Connected   1 fully connected layer

Plot actor and critic networks

plot(layerGraph(actorNet))

plot(layerGraph(criticNet))
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To check your agent, use getAction to return the action from a random observation.

getAction(agent,{rand(obsInfo(1).Dimension),rand(obsInfo(2).Dimension)})

ans = 1x1 cell array
    {[0.9228]}

You can now test and train the agent within the environment.

Create Proximal Policy Optimization Agent

Create an environment interface, and obtain its observation and action specifications.

env = rlPredefinedEnv("CartPole-Discrete");
obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

Create a critic representation.

% Create the network to be used as approximator in the critic.
criticNetwork = [
    featureInputLayer(4,'Normalization','none','Name','state')
    fullyConnectedLayer(1,'Name','CriticFC')];
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% Set options for the critic.
criticOpts = rlRepresentationOptions('LearnRate',8e-3,'GradientThreshold',1);

% Create the critic.
critic = rlValueRepresentation(criticNetwork,obsInfo,'Observation',{'state'},criticOpts);

Create an actor representation.

% Create the network to be used as approximator in the actor.
actorNetwork = [
    featureInputLayer(4,'Normalization','none','Name','state')
    fullyConnectedLayer(2,'Name','action')];

% Set options for the actor.
actorOpts = rlRepresentationOptions('LearnRate',8e-3,'GradientThreshold',1);

% Create the actor.
actor = rlStochasticActorRepresentation(actorNetwork,obsInfo,actInfo,...
    'Observation',{'state'},actorOpts);

Specify agent options, and create a PPO agent using the environment, actor, and critic.

agentOpts = rlPPOAgentOptions(...
    'ExperienceHorizon',1024, ...
    'DiscountFactor',0.95);
agent = rlPPOAgent(actor,critic,agentOpts)

agent = 
  rlPPOAgent with properties:

    AgentOptions: [1x1 rl.option.rlPPOAgentOptions]

To check your agent, use getAction to return the action from a random observation.

getAction(agent,{rand(4,1)})

ans = 1x1 cell array
    {[-10]}

You can now test and train the agent against the environment.

Create Continuous PPO Agent

Create an environment with a continuous action space, and obtain its observation and action
specifications. For this example, load the double integrator continuous action space environment used
in the example “Train DDPG Agent to Control Double Integrator System”. The observation from the
environment is a vector containing the position and velocity of a mass. The action is a scalar
representing a force, applied to the mass, ranging continuously from -2 to 2 Newton.

env = rlPredefinedEnv("DoubleIntegrator-Continuous");
obsInfo = getObservationInfo(env)

obsInfo = 
  rlNumericSpec with properties:
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     LowerLimit: -Inf
     UpperLimit: Inf
           Name: "states"
    Description: "x, dx"
      Dimension: [2 1]
       DataType: "double"

actInfo = getActionInfo(env)

actInfo = 
  rlNumericSpec with properties:

     LowerLimit: -Inf
     UpperLimit: Inf
           Name: "force"
    Description: [0x0 string]
      Dimension: [1 1]
       DataType: "double"

Since the action must be contained in a limited range, set the upper and lower limit of the action
signal accordingly. You must do so when the network representation for the actor has a nonlinear
output layer that must be scaled to produce an output in the desired range.

actInfo.LowerLimit=-2;
actInfo.UpperLimit=2;

Create a critic representation. PPO agents use a rlValueRepresentation for the critic. For
continuous observation spaces, you can use either a deep neural network or a custom basis
representation. For this example, create a deep neural network as the underlying approximator.

% create the network to be used as approximator in the critic
% it must take the observation signal as input and produce a scalar value
criticNet = [
    imageInputLayer([obsInfo.Dimension 1],'Normalization','none','Name','state')
    fullyConnectedLayer(10,'Name', 'fc_in')
    reluLayer('Name', 'relu')
    fullyConnectedLayer(1,'Name','out')];

% set some training options for the critic
criticOpts = rlRepresentationOptions('LearnRate',8e-3,'GradientThreshold',1);

% create the critic representation from the network
critic = rlValueRepresentation(criticNet,obsInfo,'Observation',{'state'},criticOpts);

PPO agents use a rlStochasticActorRepresentation. For continuous action spaces, stochastic
actors can only use a neural network approximator.

The observation input (here called myobs) must accept a two-dimensional vector, as specified in
obsInfo. The output (here called myact) must also be a two-dimensional vector (twice the number
of dimensions specified in actInfo). The elements of the output vector represent, in sequence, all
the means and all the standard deviations of every action (in this case there is only one mean value
and one standard deviation).

The fact that standard deviations must be non-negative while mean values must fall within the output
range means that the network must have two separate paths. The first path is for the mean values,
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and any output nonlinearity must be scaled so that it can produce outputs in the output range. The
second path is for the standard deviations, and you must use a softplus or relu layer to enforce non-
negativity.

% input path layers (2 by 1 input and a 1 by 1 output)
inPath = [ 
    imageInputLayer([obsInfo.Dimension 1], 'Normalization','none','Name','state')
    fullyConnectedLayer(10,'Name', 'ip_fc')   % 10 by 1 output
    reluLayer('Name', 'ip_relu')              % nonlinearity
    fullyConnectedLayer(1,'Name','ip_out') ]; % 1 by 1 output

% path layers for mean value (1 by 1 input and 1 by 1 output)
% using scalingLayer to scale the range
meanPath = [
    fullyConnectedLayer(15,'Name', 'mp_fc1') % 15 by 1 output
    reluLayer('Name', 'mp_relu')             % nonlinearity
    fullyConnectedLayer(1,'Name','mp_fc2');  % 1 by 1 output
    tanhLayer('Name','tanh');                % output range: (-1,1)
    scalingLayer('Name','mp_out','Scale',actInfo.UpperLimit) ]; % output range: (-2N,2N)

% path layers for standard deviation (1 by 1 input and output)
% using softplus layer to make it non negative
sdevPath = [
    fullyConnectedLayer(15,'Name', 'vp_fc1') % 15 by 1 output
    reluLayer('Name', 'vp_relu')             % nonlinearity
    fullyConnectedLayer(1,'Name','vp_fc2');  % 1 by 1 output
    softplusLayer('Name', 'vp_out') ];       % output range: (0,+Inf)

% conctatenate two inputs (along dimension #3) to form a single (2 by 1) output layer
outLayer = concatenationLayer(1,2,'Name','mean&sdev');

% add layers to layerGraph network object
actorNet = layerGraph(inPath);
actorNet = addLayers(actorNet,meanPath);
actorNet = addLayers(actorNet,sdevPath);
actorNet = addLayers(actorNet,outLayer);

% connect layers: you must connect the mean value path to the first input of the concatenation layer
actorNet = connectLayers(actorNet,'ip_out','mp_fc1/in');     % connect output of inPath to meanPath input
actorNet = connectLayers(actorNet,'ip_out','vp_fc1/in');     % connect output of inPath to sdevPath input
actorNet = connectLayers(actorNet,'mp_out','mean&sdev/in1'); % connect output of meanPath to mean&sdev input #1
actorNet = connectLayers(actorNet,'vp_out','mean&sdev/in2'); % connect output of sdevPath to mean&sdev input #2

% plot network 
plot(actorNet)
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Specify some options for the actor and create the stochastic actor representation using the deep
neural network actorNet.

% set some training options for the actor
actorOpts = rlRepresentationOptions('LearnRate',8e-3,'GradientThreshold',1);

% create the actor using the network
actor = rlStochasticActorRepresentation(actorNet,obsInfo,actInfo,...
    'Observation',{'state'},actorOpts);

Specify agent options, and create a PPO agent using the actor, critic and agent options.

agentOpts = rlPPOAgentOptions(...
    'ExperienceHorizon',1024, ...
    'DiscountFactor',0.95);
agent = rlPPOAgent(actor,critic,agentOpts)

agent = 
  rlPPOAgent with properties:

    AgentOptions: [1x1 rl.option.rlPPOAgentOptions]

To check your agent, use getAction to return the action from a random observation.

getAction(agent,{rand(2,1)})
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ans = 1x1 cell array
    {[0.6668]}

You can now test and train the agent within the environment.

Create PPO Agent with Recurrent Neural Networks

For this example load the predefined environment used for the “Train DQN Agent to Balance Cart-
Pole System” example.

env = rlPredefinedEnv('CartPole-Discrete');

Get observation and action information. This environment has a continuous four-dimensional
observation space (the positions and velocities of both cart and pole) and a discrete one-dimensional
action space consisting on the application of two possible forces, -10N or 10N.

obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

Create a recurrent deep neural network for the critic. To create a recurrent neural network, use a
sequenceInputLayer as the input layer and include an lstmLayer as one of the other network
layers.

criticNetwork = [
    sequenceInputLayer(obsInfo.Dimension(1),'Normalization','none','Name','myobs')
    fullyConnectedLayer(8, 'Name', 'fc')
    reluLayer('Name','relu')
    lstmLayer(8,'OutputMode','sequence','Name','lstm')
    fullyConnectedLayer(1,'Name','output')];

Create a value function representation object for the critic.

criticOptions = rlRepresentationOptions('LearnRate',1e-2,'GradientThreshold',1);
critic = rlValueRepresentation(criticNetwork,obsInfo,...
    'Observation','myobs', criticOptions);

Define a recurrent neural network for the actor. Since the critic has a recurrent network, the actor
must have a recurrent network too.

actorNetwork = [
    sequenceInputLayer(obsInfo.Dimension(1),'Normalization','none','Name','myobs')
    fullyConnectedLayer(8,'Name','fc')
    reluLayer('Name','relu')
    lstmLayer(8,'OutputMode','sequence','Name','lstm')
    fullyConnectedLayer(numel(actInfo.Elements),'Name','output')
    softmaxLayer('Name','actionProb')];

Create a stochastic actor representation for the network.

actorOptions = rlRepresentationOptions('LearnRate',1e-3,'GradientThreshold',1);
actor = rlStochasticActorRepresentation(actorNetwork,obsInfo,actInfo,...
    'Observation','myobs', actorOptions);

Create the agent options object.
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agentOptions = rlPPOAgentOptions(...
    'AdvantageEstimateMethod', 'finite-horizon', ...
    'ClipFactor', 0.1);

When recurrent neural networks are used, the MiniBatchSize property is the length of the learning
trajectory.

agentOptions.MiniBatchSize

ans = 128

Create the agent using the actor and critic representations, as well as the agent options object.

agent = rlPPOAgent(actor,critic,agentOptions);

Check your agent using getAction to return the action from a random observation.

getAction(agent,rand(obsInfo.Dimension))

ans = 1x1 cell array
    {[10]}

Tips
• For continuous action spaces, this agent does not enforce the constraints set by the action
specification. In this case, you must enforce action space constraints within the environment.

• While tuning the learning rate of the actor network is necessary for PPO agents, it is not
necessary for TRPO agents.

See Also
rlAgentInitializationOptions | rlPPOAgentOptions |
rlStochasticActorRepresentation | rlValueRepresentation | Deep Network Designer

Topics
“Proximal Policy Optimization Agents”
“Reinforcement Learning Agents”
“Train Reinforcement Learning Agents”

Introduced in R2019b
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rlPPOAgentOptions
Options for PPO agent

Description
Use an rlPPOAgentOptions object to specify options for proximal policy optimization (PPO) agents.
To create a PPO agent, use rlPPOAgent.

For more information on PPO agents, see “Proximal Policy Optimization Agents”.

For more information on the different types of reinforcement learning agents, see “Reinforcement
Learning Agents”.

Creation

Syntax
opt = rlPPOAgentOptions
opt = rlPPOAgentOptions(Name,Value)

Description

opt = rlPPOAgentOptions creates an rlPPOAgentOptions object for use as an argument when
creating a PPO agent using all default settings. You can modify the object properties using dot
notation.

opt = rlPPOAgentOptions(Name,Value) sets option properties on page 3-99 using name-value
arguments. For example, rlPPOAgentOptions('DiscountFactor',0.95) creates an option set
with a discount factor of 0.95. You can specify multiple name-value arguments. Enclose each
property name in quotes.

Properties
ExperienceHorizon — Number of steps the agent interacts with the environment before
learning
512 (default) | positive integer

Number of steps the agent interacts with the environment before learning from its experience,
specified as a positive integer.

The ExperienceHorizon value must be greater than or equal to the MiniBatchSize value.

MiniBatchSize — Mini-batch size
128 (default) | positive integer

Mini-batch size used for each learning epoch, specified as a positive integer. When the agent uses a
recurrent neural network, MiniBatchSize is treated as the training trajectory length.
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The MiniBatchSize value must be less than or equal to the ExperienceHorizon value.

ClipFactor — Clip factor
0.2 (default) | positive scalar less than 1

Clip factor for limiting the change in each policy update step, specified as a positive scalar less than
1.

EntropyLossWeight — Entropy loss weight
0.01 (default) | scalar value between 0 and 1

Entropy loss weight, specified as a scalar value between 0 and 1. A higher entropy loss weight value
promotes agent exploration by applying a penalty for being too certain about which action to take.
Doing so can help the agent move out of local optima.

When gradients are computed during training, an additional gradient component is computed for
minimizing this loss function. For more information, see “Entropy Loss”.

NumEpoch — Number of epochs
3 (default) | positive integer

Number of epochs for which the actor and critic networks learn from the current experience set,
specified as a positive integer.

AdvantageEstimateMethod — Method for estimating advantage values
"gae" (default) | "finite-horizon"

Method for estimating advantage values, specified as one of the following:

• "gae" — Generalized advantage estimator
• "finite-horizon" — Finite horizon estimation

For more information on these methods, see the training algorithm information in “Proximal Policy
Optimization Agents”.

GAEFactor — Smoothing factor for generalized advantage estimator
0.95 (default) | scalar value between 0 and 1

Smoothing factor for generalized advantage estimator, specified as a scalar value between 0 and 1,
inclusive. This option applies only when the AdvantageEstimateMethod option is "gae"

UseDeterministicExploitation — Use action with maximum likelihood
false (default) | true

Option to return the action with maximum likelihood for simulation and policy generation, specified
as a logical value. When UseDeterministicExploitation is set to true, the action with
maximum likelihood is always used in sim and generatePolicyFunction, which causes the agent
to behave deterministically.

When UseDeterministicExploitation is set to false, the agent samples actions from
probability distributions, which causes the agent to behave stochastically.

NormalizedAdvantageMethod — Method for normalizing advantage function
"none" (default) | "current | "moving"
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Method for normalizing advantage function values, specified as one of the following:

• "none" — Do not normalize advantage values
• "current" — Normalize the advantage function using the mean and standard deviation for the

current mini-batch of experiences.
• "moving" — Normalize the advantage function using the mean and standard deviation for a

moving window of recent experiences. To specify the window size, set the
AdvantageNormalizingWindow option.

In some environments, you can improve agent performance by normalizing the advantage function
during training. The agent normalizes the advantage function by subtracting the mean advantage
value and scaling by the standard deviation.

AdvantageNormalizingWindow — Window size for normalizing advantage function
1e6 (default) | positive integer

Window size for normalizing advantage function values, specified as a positive integer. Use this
option when the NormalizedAdvantageMethod option is "moving".

SampleTime — Sample time of agent
1 (default) | positive scalar

Sample time of agent, specified as a positive scalar.

Within a Simulink environment, the agent gets executed every SampleTime seconds of simulation
time.

Within a MATLAB environment, the agent gets executed every time the environment advances.
However, SampleTime is the time interval between consecutive elements in the output experience
returned by sim or train.

DiscountFactor — Discount factor
0.99 (default) | positive scalar less than or equal to 1

Discount factor applied to future rewards during training, specified as a positive scalar less than or
equal to 1.

Object Functions
rlPPOAgent Proximal policy optimization reinforcement learning agent

Examples

Create PPO Agent Options Object

Create a PPO agent options object, specifying the experience horizon.

opt = rlPPOAgentOptions('ExperienceHorizon',256)

opt = 
  rlPPOAgentOptions with properties:

               ExperienceHorizon: 256
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                   MiniBatchSize: 128
                      ClipFactor: 0.2000
               EntropyLossWeight: 0.0100
                        NumEpoch: 3
         AdvantageEstimateMethod: "gae"
                       GAEFactor: 0.9500
    UseDeterministicExploitation: 0
       NormalizedAdvantageMethod: "none"
      AdvantageNormalizingWindow: 1000000
                      SampleTime: 1
                  DiscountFactor: 0.9900

You can modify options using dot notation. For example, set the agent sample time to 0.5.

opt.SampleTime = 0.5;

See Also
Topics
“Proximal Policy Optimization Agents”

Introduced in R2019b
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rlQAgent
Q-learning reinforcement learning agent

Description
The Q-learning algorithm is a model-free, online, off-policy reinforcement learning method. A Q-
learning agent is a value-based reinforcement learning agent which trains a critic to estimate the
return or future rewards.

For more information on Q-learning agents, see “Q-Learning Agents”.

For more information on the different types of reinforcement learning agents, see “Reinforcement
Learning Agents”.

Creation

Syntax
agent = rlQAgent(critic,agentOptions)

Description

agent = rlQAgent(critic,agentOptions) creates a Q-learning agent with the specified critic
network and sets the AgentOptions property.

Input Arguments

critic — Critic network representation
rlQValueRepresentation object

Critic network representation, specified as an rlQValueRepresentation object. For more
information on creating critic representations, see “Create Policy and Value Function
Representations”.

Properties
AgentOptions — Agent options
rlQAgentOptions object

Agent options, specified as an rlQAgentOptions object.

Object Functions
train Train reinforcement learning agents within a specified environment
sim Simulate trained reinforcement learning agents within specified

environment
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getAction Obtain action from agent or actor representation given environment
observations

getActor Get actor representation from reinforcement learning agent
setActor Set actor representation of reinforcement learning agent
getCritic Get critic representation from reinforcement learning agent
setCritic Set critic representation of reinforcement learning agent
generatePolicyFunction Create function that evaluates trained policy of reinforcement learning

agent

Examples

Create a Q-Learning Agent

Create an environment interface.

env = rlPredefinedEnv("BasicGridWorld");

Create a critic Q-value function representation using a Q-table derived from the environment
observation and action specifications.

qTable = rlTable(getObservationInfo(env),getActionInfo(env));
critic = rlQValueRepresentation(qTable,getObservationInfo(env),getActionInfo(env));

Create a Q-learning agent using the specified critic value function and an epsilon value of 0.05.

opt = rlQAgentOptions;
opt.EpsilonGreedyExploration.Epsilon = 0.05;

agent = rlQAgent(critic,opt)

agent = 
  rlQAgent with properties:

    AgentOptions: [1x1 rl.option.rlQAgentOptions]

To check your agent, use getAction to return the action from a random observation.

getAction(agent,{randi(25)})

ans = 1

You can now test and train the agent against the environment.

See Also
Functions
rlQAgentOptions

Topics
“Q-Learning Agents”
“Reinforcement Learning Agents”
“Train Reinforcement Learning Agents”

3 Objects

3-104



Introduced in R2019a
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rlQAgentOptions
Options for Q-learning agent

Description
Use an rlQAgentOptions object to specify options for creating Q-learning agents. To create a Q-
learning agent, use rlQAgent

For more information on Q-learning agents, see “Q-Learning Agents”.

For more information on the different types of reinforcement learning agents, see “Reinforcement
Learning Agents”.

Creation

Syntax
opt = rlQAgentOptions
opt = rlQAgentOptions(Name,Value)

Description

opt = rlQAgentOptions creates an rlQAgentOptions object for use as an argument when
creating a Q-learning agent using all default settings. You can modify the object properties using dot
notation.

opt = rlQAgentOptions(Name,Value)sets option properties on page 3-106 using name-value
pairs. For example, rlQAgentOptions('DiscountFactor',0.95) creates an option set with a
discount factor of 0.95. You can specify multiple name-value pairs. Enclose each property name in
quotes.

Properties
EpsilonGreedyExploration — Options for epsilon-greedy exploration
EpsilonGreedyExploration object

Options for epsilon-greedy exploration, specified as an EpsilonGreedyExploration object with the
following properties.
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Property Description Default Value
Epsilon Probability threshold to either

randomly select an action or
select the action that maximizes
the state-action value function.
A larger value of Epsilon
means that the agent randomly
explores the action space at a
higher rate.

1

EpsilonMin Minimum value of Epsilon 0.01
EpsilonDecay Decay rate 0.0050

At the end of each training time step, if Epsilon is greater than EpsilonMin, then it is updated
using the following formula.

Epsilon = Epsilon*(1-EpsilonDecay)

If your agent converges on local optima too quickly, you can promote agent exploration by increasing
Epsilon.

To specify exploration options, use dot notation after creating the rlQAgentOptions object opt. For
example, set the epsilon value to 0.9.
opt.EpsilonGreedyExploration.Epsilon = 0.9;

SampleTime — Sample time of agent
1 (default) | positive scalar

Sample time of agent, specified as a positive scalar.

Within a Simulink environment, the agent gets executed every SampleTime seconds of simulation
time.

Within a MATLAB environment, the agent gets executed every time the environment advances.
However, SampleTime is the time interval between consecutive elements in the output experience
returned by sim or train.

DiscountFactor — Discount factor
0.99 (default) | positive scalar less than or equal to 1

Discount factor applied to future rewards during training, specified as a positive scalar less than or
equal to 1.

Object Functions
rlQAgent Q-learning reinforcement learning agent

Examples

Create Q-Learning Agent Options Object

This example shows how to create an options object for a Q-Learning agent.
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Create an rlQAgentOptions object that specifies the agent sample time.

opt = rlQAgentOptions('SampleTime',0.5)

opt = 
  rlQAgentOptions with properties:

    EpsilonGreedyExploration: [1x1 rl.option.EpsilonGreedyExploration]
                  SampleTime: 0.5000
              DiscountFactor: 0.9900

You can modify options using dot notation. For example, set the agent discount factor to 0.95.

opt.DiscountFactor = 0.95;

See Also
Topics
“Q-Learning Agents”

Introduced in R2019a
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rlQValueRepresentation
Q-Value function critic representation for reinforcement learning agents

Description
This object implements a Q-value function approximator to be used as a critic within a reinforcement
learning agent. A Q-value function is a function that maps an observation-action pair to a scalar value
representing the expected total long-term rewards that the agent is expected to accumulate when it
starts from the given observation and executes the given action. Q-value function critics therefore
need both observations and actions as inputs. After you create an rlQValueRepresentation critic,
use it to create an agent relying on a Q-value function critic, such as an rlQAgent, rlDQNAgent,
rlSARSAAgent, rlDDPGAgent, or rlTD3Agent. For more information on creating representations,
see “Create Policy and Value Function Representations”.

Creation

Syntax
critic = rlQValueRepresentation(net,observationInfo,actionInfo,'Observation',
obsName,'Action',actName)
critic = rlQValueRepresentation(tab,observationInfo,actionInfo)
critic = rlQValueRepresentation({basisFcn,W0},observationInfo,actionInfo)

critic = rlQValueRepresentation(net,observationInfo,actionInfo,'Observation',
obsName)
critic = rlQValueRepresentation({basisFcn,W0},observationInfo,actionInfo)

critic = rlQValueRepresentation( ___ ,options)

Description
Scalar Output Q-Value Critic

critic = rlQValueRepresentation(net,observationInfo,actionInfo,'Observation',
obsName,'Action',actName) creates the Q-value function critic. net is the deep neural
network used as an approximator, and must have both observations and action as inputs, and a single
scalar output. This syntax sets the ObservationInfo and ActionInfo properties of critic respectively
to the inputs observationInfo and actionInfo, containing the observations and action
specifications. obsName must contain the names of the input layers of net that are associated with
the observation specifications. The action name actName must be the name of the input layer of net
that is associated with the action specifications.

critic = rlQValueRepresentation(tab,observationInfo,actionInfo) creates the Q-
value function based critic with discrete action and observation spaces from the Q-value table tab.
tab is a rlTable object containing a table with as many rows as the possible observations and as
many columns as the possible actions. This syntax sets the ObservationInfo and ActionInfo properties
of critic respectively to the inputs observationInfo and actionInfo, which must be
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rlFiniteSetSpec objects containing the specifications for the discrete observations and action
spaces, respectively.

critic = rlQValueRepresentation({basisFcn,W0},observationInfo,actionInfo)
creates a Q-value function based critic using a custom basis function as underlying approximator.
The first input argument is a two-elements cell in which the first element contains the handle
basisFcn to a custom basis function, and the second element contains the initial weight vector W0.
Here the basis function must have both observations and action as inputs and W0 must be a column
vector. This syntax sets the ObservationInfo and ActionInfo properties of critic respectively to the
inputs observationInfo and actionInfo.

Multi-Output Discrete Action Space Q-Value Critic

critic = rlQValueRepresentation(net,observationInfo,actionInfo,'Observation',
obsName) creates the multi-output Q-value function critic for a discrete action space. net is the
deep neural network used as an approximator, and must have only the observations as input and a
single output layer having as many elements as the number of possible discrete actions. This syntax
sets the ObservationInfo and ActionInfo properties of critic respectively to the inputs
observationInfo and actionInfo, containing the observations and action specifications. Here,
actionInfo must be an rlFiniteSetSpec object containing the specifications for the discrete
action space. The observation names obsName must be the names of the input layers of net.

critic = rlQValueRepresentation({basisFcn,W0},observationInfo,actionInfo)
creates the multi-output Q-value function critic for a discrete action space using a custom basis
function as underlying approximator. The first input argument is a two-elements cell in which the first
element contains the handle basisFcn to a custom basis function, and the second element contains
the initial weight matrix W0. Here the basis function must have only the observations as inputs, and
W0 must have as many columns as the number of possible actions. This syntax sets the
ObservationInfo and ActionInfo properties of critic respectively to the inputs observationInfo
and actionInfo.

Options

critic = rlQValueRepresentation( ___ ,options) creates the value function based critic
using the additional option set options, which is an rlRepresentationOptions object. This
syntax sets the Options property of critic to the options input argument. You can use this syntax
with any of the previous input-argument combinations.

Input Arguments

net — Deep neural network
array of Layer objects | layerGraph object | DAGNetwork object | SeriesNetwork object |
dlNetwork object

Deep neural network used as the underlying approximator within the critic, specified as one of the
following:

• Array of Layer objects
• layerGraph object
• DAGNetwork object
• SeriesNetwork object
• dlnetwork object
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For single output critics, net must have both observations and actions as inputs, and a scalar output,
representing the expected cumulative long-term reward when the agent starts from the given
observation and takes the given action. For multi-output discrete action space critics, net must have
only the observations as input and a single output layer having as many elements as the number of
possible discrete actions. Each output element represents the expected cumulative long-term reward
when the agent starts from the given observation and takes the corresponding action. The learnable
parameters of the critic are the weights of the deep neural network.

The network input layers must be in the same order and with the same data type and dimensions as
the signals defined in ObservationInfo. Also, the names of these input layers must match the
observation names listed in obsName.

The network output layer must have the same data type and dimension as the signal defined in
ActionInfo. Its name must be the action name specified in actName.

rlQValueRepresentation objects support recurrent deep neural networks for multi-output
discrete action space critics.

For a list of deep neural network layers, see “List of Deep Learning Layers”. For more information on
creating deep neural networks for reinforcement learning, see “Create Policy and Value Function
Representations”.

obsName — Observation names
string | character vector | cell array or character vectors

Observation names, specified as a cell array of strings or character vectors. The observation names
must be the names of the input layers in net.
Example: {'my_obs'}

actName — Action name
string | character vector | single-element cell array containing a character vector

Action name, specified as a single-element cell array that contains a character vector. It must be the
name of the output layer of net.
Example: {'my_act'}

tab — Q-value table
rlTable object

Q-value table, specified as an rlTable object containing an array with as many rows as the possible
observations and as many columns as the possible actions. The element (s,a) is the expected
cumulative long-term reward for taking action a from observed state s. The elements of this array are
the learnable parameters of the critic.

basisFcn — Custom basis function
function handle

Custom basis function, specified as a function handle to a user-defined MATLAB function. The user
defined function can either be an anonymous function or a function on the MATLAB path. The output
of the critic is c = W'*B, where W is a weight vector or matrix containing the learnable parameters,
and B is the column vector returned by the custom basis function.
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For a single-output Q-value critic, c is a scalar representing the expected cumulative long term
reward when the agent starts from the given observation and takes the given action. In this case,
your basis function must have the following signature.

B = myBasisFunction(obs1,obs2,...,obsN,act)

For a multiple-output Q-value critic with a discrete action space, c is a vector in which each element
is the expected cumulative long term reward when the agent starts from the given observation and
takes the action corresponding to the position of the considered element. In this case, your basis
function must have the following signature.

B = myBasisFunction(obs1,obs2,...,obsN)

Here, obs1 to obsN are observations in the same order and with the same data type and dimensions
as the signals defined in observationInfo and act has the same data type and dimensions as the
action specifications in actionInfo
Example: @(obs1,obs2,act) [act(2)*obs1(1)^2; abs(obs2(5)+act(1))]

W0 — Initial value of the basis function weights
matrix

Initial value of the basis function weights, W. For a single-output Q-value critic, W is a column vector
having the same length as the vector returned by the basis function. For a multiple-output Q-value
critic with a discrete action space, W is a matrix which must have as many rows as the length of the
basis function output, and as many columns as the number of possible actions.

Properties
Options — Representation options
rlRepresentationOptions object

Representation options, specified as an rlRepresentationOptions object. Available options
include the optimizer used for training and the learning rate.

ObservationInfo — Observation specifications
rlFiniteSetSpec object | rlNumericSpec object | array

Observation specifications, specified as an rlFiniteSetSpec or rlNumericSpec object or an array
containing a mix of such objects. These objects define properties such as the dimensions, data type,
and names of the observation signals.

rlQValueRepresentation sets the ObservationInfo property of critic to the input
observationInfo.

You can extract ObservationInfo from an existing environment or agent using
getObservationInfo. You can also construct the specifications manually.

ActionInfo — Action specifications
rlFiniteSetSpec object | rlNumericSpec object

Action specifications, specified as an rlFiniteSetSpec or rlNumericSpec object. These objects
define properties such as the dimensions, data type and name of the action signals.

rlQValueRepresentation sets the ActionInfo property of critic to the input actionInfo.
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You can extract ActionInfo from an existing environment or agent using getActionInfo. You can
also construct the specifications manually.

For custom basis function representations, the action signal must be a scalar, a column vector, or a
discrete action.

Object Functions
rlDDPGAgent Deep deterministic policy gradient reinforcement learning agent
rlTD3Agent Twin-delayed deep deterministic policy gradient reinforcement learning agent
rlDQNAgent Deep Q-network reinforcement learning agent
rlQAgent Q-learning reinforcement learning agent
rlSARSAAgent SARSA reinforcement learning agent
rlSACAgent Soft actor-critic reinforcement learning agent
getValue Obtain estimated value function representation
getMaxQValue Obtain maximum state-value function estimate for Q-value function representation

with discrete action space

Examples

Create Q-Value Function Critic from Deep Neural Network

Create an observation specification object (or alternatively use getObservationInfo to extract the
specification object from an environment). For this example, define the observation space as a
continuous four-dimensional space, so that a single observation is a column vector containing four
doubles.

obsInfo = rlNumericSpec([4 1]);

Create an action specification object (or alternatively use getActionInfo to extract the
specification object from an environment). For this example, define the action space as a continuous
two-dimensional space, so that a single action is a column vector containing two doubles.

actInfo = rlNumericSpec([2 1]);

Create a deep neural network to approximate the Q-value function. The network must have two
inputs, one for the observation and one for the action. The observation input (here called myobs)
must accept a four-element vector (the observation vector defined by obsInfo). The action input
(here called myact) must accept a two-element vector (the action vector defined by actInfo). The
output of the network must be a scalar, representing the expected cumulative long-term reward when
the agent starts from the given observation and takes the given action.

% observation path layers
obsPath = [featureInputLayer(4, 'Normalization','none','Name','myobs') 
    fullyConnectedLayer(1,'Name','obsout')];

% action path layers
actPath = [featureInputLayer(2, 'Normalization','none','Name','myact') 
    fullyConnectedLayer(1,'Name','actout')];

% common path to output layers
comPath = [additionLayer(2,'Name', 'add')  fullyConnectedLayer(1, 'Name', 'output')];

% add layers to network object
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net = addLayers(layerGraph(obsPath),actPath); 
net = addLayers(net,comPath);

% connect layers
net = connectLayers(net,'obsout','add/in1');
net = connectLayers(net,'actout','add/in2');

% plot network
plot(net)

Create the critic with rlQValueRepresentation, using the network, the observations and action
specification objects, as well as the names of the network input layers.

critic = rlQValueRepresentation(net,obsInfo,actInfo, ...
    'Observation',{'myobs'},'Action',{'myact'})

critic = 
  rlQValueRepresentation with properties:

         ActionInfo: [1x1 rl.util.rlNumericSpec]
    ObservationInfo: [1x1 rl.util.rlNumericSpec]
            Options: [1x1 rl.option.rlRepresentationOptions]

To check your critic, use the getValue function to return the value of a random observation and
action, using the current network weights.

v = getValue(critic,{rand(4,1)},{rand(2,1)})
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v = single
    0.1102

You can now use the critic (along with an with an actor) to create an agent relying on a Q-value
function critic (such as an rlQAgent, rlDQNAgent, rlSARSAAgent, or rlDDPGAgent agent).

Create Multi-Output Q-Value Function Critic from Deep Neural Network

This example shows how to create a multi-output Q-value function critic for a discrete action space
using a deep neural network approximator.

This critic takes only the observation as input and produces as output a vector with as many elements
as the possible actions. Each element represents the expected cumulative long term reward when the
agent starts from the given observation and takes the action corresponding to the position of the
element in the output vector.

Create an observation specification object (or alternatively use getObservationInfo to extract the
specification object from an environment). For this example, define the observation space as a
continuous four-dimensional space, so that a single observation is a column vector containing four
doubles.

obsInfo = rlNumericSpec([4 1]);

Create a finite set action specification object (or alternatively use getActionInfo to extract the
specification object from an environment with a discrete action space). For this example, define the
action space as a finite set consisting of three possible values (named 7, 5, and 3 in this case).

actInfo = rlFiniteSetSpec([7 5 3]);

Create a deep neural network approximator to approximate the Q-value function within the critic.
The input of the network (here called myobs) must accept a four-element vector, as defined by
obsInfo. The output must be a single output layer having as many elements as the number of
possible discrete actions (three in this case, as defined by actInfo).

net = [featureInputLayer(4,'Normalization','none','Name','myobs') 
       fullyConnectedLayer(3,'Name','value')];

Create the critic using the network, the observations specification object, and the name of the
network input layer.

critic = rlQValueRepresentation(net,obsInfo,actInfo,'Observation',{'myobs'})

critic = 
  rlQValueRepresentation with properties:

         ActionInfo: [1x1 rl.util.rlFiniteSetSpec]
    ObservationInfo: [1x1 rl.util.rlNumericSpec]
            Options: [1x1 rl.option.rlRepresentationOptions]

To check your critic, use the getValue function to return the values of a random observation, using
the current network weights. There is one value for each of the three possible actions.

v = getValue(critic,{rand(4,1)})
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v = 3x1 single column vector

    0.7232
    0.8177
   -0.2212

You can now use the critic (along with an actor) to create a discrete action space agent relying on a
Q-value function critic (such as an rlQAgent, rlDQNAgent, or rlSARSAAgent agent).

Create Q-Value Function Critic from Table

Create a finite set observation specification object (or alternatively use getObservationInfo to
extract the specification object from an environment with a discrete observation space). For this
example define the observation space as a finite set with of 4 possible values.

obsInfo = rlFiniteSetSpec([7 5 3 1]);

Create a finite set action specification object (or alternatively use getActionInfo to extract the
specification object from an environment with a discrete action space). For this example define the
action space as a finite set with 2 possible values.

actInfo = rlFiniteSetSpec([4 8]);

Create a table to approximate the value function within the critic. rlTable creates a value table
object from the observation and action specifications objects.

qTable = rlTable(obsInfo,actInfo);

The table stores a value (representing the expected cumulative long term reward) for each possible
observation-action pair. Each row corresponds to an observation and each column corresponds to an
action. You can access the table using the Table property of the vTable object. The initial value of
each element is zero.

qTable.Table

ans = 4×2

     0     0
     0     0
     0     0
     0     0

You can initialize the table to any value, in this case, an array containing the integer from 1 through
8.

qTable.Table=reshape(1:8,4,2)

qTable = 
  rlTable with properties:

    Table: [4x2 double]

Create the critic using the table as well as the observations and action specification objects.
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critic = rlQValueRepresentation(qTable,obsInfo,actInfo)

critic = 
  rlQValueRepresentation with properties:

         ActionInfo: [1x1 rl.util.rlFiniteSetSpec]
    ObservationInfo: [1x1 rl.util.rlFiniteSetSpec]
            Options: [1x1 rl.option.rlRepresentationOptions]

To check your critic, use the getValue function to return the value of a given observation and action,
using the current table entries.

v = getValue(critic,{5},{8})

v = 6

You can now use the critic (along with an with an actor) to create a discrete action space agent
relying on a Q-value function critic (such as an rlQAgent, rlDQNAgent, or rlSARSAAgent agent).

Create Q-Value Function Critic from Custom Basis Function

Create an observation specification object (or alternatively use getObservationInfo to extract the
specification object from an environment). For this example, define the observation space as a
continuous four-dimensional space, so that a single observation is a column vector containing 3
doubles.

obsInfo = rlNumericSpec([3 1]);

Create an action specification object (or alternatively use getActionInfo to extract the
specification object from an environment). For this example, define the action space as a continuous
two-dimensional space, so that a single action is a column vector containing 2 doubles.

actInfo = rlNumericSpec([2 1]);

Create a custom basis function to approximate the value function within the critic. The custom basis
function must return a column vector. Each vector element must be a function of the observations and
actions respectively defined by obsInfo and actInfo.

myBasisFcn = @(myobs,myact) [myobs(2)^2; myobs(1)+exp(myact(1)); abs(myact(2)); myobs(3)]

myBasisFcn = function_handle with value:
    @(myobs,myact)[myobs(2)^2;myobs(1)+exp(myact(1));abs(myact(2));myobs(3)]

The output of the critic is the scalar W'*myBasisFcn(myobs,myact), where W is a weight column
vector which must have the same size of the custom basis function output. This output is the expected
cumulative long term reward when the agent starts from the given observation and takes the best
possible action. The elements of W are the learnable parameters.

Define an initial parameter vector.

W0 = [1;4;4;2];
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Create the critic. The first argument is a two-element cell containing both the handle to the custom
function and the initial weight vector. The second and third arguments are, respectively, the
observation and action specification objects.

critic = rlQValueRepresentation({myBasisFcn,W0},obsInfo,actInfo)

critic = 
  rlQValueRepresentation with properties:

         ActionInfo: [1×1 rl.util.rlNumericSpec]
    ObservationInfo: [1×1 rl.util.rlNumericSpec]
            Options: [1×1 rl.option.rlRepresentationOptions]

To check your critic, use the getValue function to return the value of a given observation-action pair,
using the current parameter vector.

v = getValue(critic,{[1 2 3]'},{[4 5]'})

v = 
  1×1 dlarray

  252.3926

You can now use the critic (along with an with an actor) to create an agent relying on a Q-value
function critic (such as an rlQAgent, rlDQNAgent, rlSARSAAgent, or rlDDPGAgent agent).

Create Multi-Output Q-Value Function Critic from Custom Basis Function

This example shows how to create a multi-output Q-value function critic for a discrete action space
using a custom basis function approximator.

This critic takes only the observation as input and produces as output a vector with as many elements
as the possible actions. Each element represents the expected cumulative long term reward when the
agent starts from the given observation and takes the action corresponding to the position of the
element in the output vector.

Create an observation specification object (or alternatively use getObservationInfo to extract the
specification object from an environment). For this example, define the observation space as a
continuous four-dimensional space, so that a single observation is a column vector containing 2
doubles.

obsInfo = rlNumericSpec([2 1]);

Create a finite set action specification object (or alternatively use getActionInfo to extract the
specification object from an environment with a discrete action space). For this example, define the
action space as a finite set consisting of 3 possible values (named 7, 5, and 3 in this case).

actInfo = rlFiniteSetSpec([7 5 3]);

Create a custom basis function to approximate the value function within the critic. The custom basis
function must return a column vector. Each vector element must be a function of the observations
defined by obsInfo.
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myBasisFcn = @(myobs) [myobs(2)^2; myobs(1); exp(myobs(2)); abs(myobs(1))]

myBasisFcn = function_handle with value:
    @(myobs)[myobs(2)^2;myobs(1);exp(myobs(2));abs(myobs(1))]

The output of the critic is the vector c = W'*myBasisFcn(myobs), where W is a weight matrix
which must have as many rows as the length of the basis function output, and as many columns as the
number of possible actions.

Each element of c is the expected cumulative long term reward when the agent starts from the given
observation and takes the action corresponding to the position of the considered element. The
elements of W are the learnable parameters.

Define an initial parameter matrix.

W0 = rand(4,3);

Create the critic. The first argument is a two-element cell containing both the handle to the custom
function and the initial parameter matrix. The second and third arguments are, respectively, the
observation and action specification objects.

critic = rlQValueRepresentation({myBasisFcn,W0},obsInfo,actInfo)

critic = 
  rlQValueRepresentation with properties:

         ActionInfo: [1x1 rl.util.rlFiniteSetSpec]
    ObservationInfo: [1x1 rl.util.rlNumericSpec]
            Options: [1x1 rl.option.rlRepresentationOptions]

To check your critic, use the getValue function to return the values of a random observation, using
the current parameter matrix. Note that there is one value for each of the three possible actions.

v = getValue(critic,{rand(2,1)})

v = 
  3x1 dlarray

    2.1395
    1.2183
    2.3342

You can now use the critic (along with an actor) to create a discrete action space agent relying on a
Q-value function critic (such as an rlQAgent, rlDQNAgent, or rlSARSAAgent agent).

Create Q-Value Function Critic from Recurrent Neural Network

Create an environment and obtain observation and action information.

env = rlPredefinedEnv('CartPole-Discrete');
obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);
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numObs = obsInfo.Dimension(1);
numDiscreteAct = numel(actInfo.Elements);

Create a recurrent deep neural network for your critic. To create a recurrent neural network, use a
sequenceInputLayer as the input layer and include at least one lstmLayer.

Create a recurrent neural network for a multi-output Q-value function representation.

criticNetwork = [
    sequenceInputLayer(numObs,'Normalization','none','Name','state')
    fullyConnectedLayer(50, 'Name', 'CriticStateFC1')
    reluLayer('Name','CriticRelu1')
    lstmLayer(20,'OutputMode','sequence','Name','CriticLSTM');
    fullyConnectedLayer(20,'Name','CriticStateFC2')
    reluLayer('Name','CriticRelu2')
    fullyConnectedLayer(numDiscreteAct,'Name','output')];

Create a representation for your critic using the recurrent neural network.

criticOptions = rlRepresentationOptions('LearnRate',1e-3,'GradientThreshold',1);
critic = rlQValueRepresentation(criticNetwork,obsInfo,actInfo,...
    'Observation','state',criticOptions);

See Also
Functions
rlRepresentationOptions | getActionInfo | getObservationInfo

Topics
“Create Policy and Value Function Representations”
“Reinforcement Learning Agents”

Introduced in R2020a
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rlRepresentationOptions
Options set for reinforcement learning agent representations (critics and actors)

Description
Use an rlRepresentationOptions object to specify an options set for critics
(rlValueRepresentation, rlQValueRepresentation) and actors
(rlDeterministicActorRepresentation, rlStochasticActorRepresentation).

Creation

Syntax
repOpts = rlRepresentationOptions
repOpts = rlRepresentationOptions(Name,Value)

Description

repOpts = rlRepresentationOptions creates a default option set to use as a last argument
when creating a reinforcement learning actor or critic. You can modify the object properties using dot
notation.

repOpts = rlRepresentationOptions(Name,Value) creates an options set with the specified
“Properties” on page 3-121 using one or more name-value pair arguments.

Properties
LearnRate — Learning rate for the representation
0.01 (default) | positive scalar

Learning rate for the representation, specified as a positive scalar. If the learning rate is too low, then
training takes a long time. If the learning rate is too high, then training might reach a suboptimal
result or diverge.
Example: 'LearnRate',0.025

Optimizer — Optimizer for representation
"adam" (default) | "sgdm" | "rmsprop"

Optimizer for training the network of the representation, specified as one of the following values.

• "adam" — Use the Adam optimizer. You can specify the decay rates of the gradient and squared
gradient moving averages using the GradientDecayFactor and
SquaredGradientDecayFactor fields of the OptimizerParameters option.

• "sgdm" — Use the stochastic gradient descent with momentum (SGDM) optimizer. You can specify
the momentum value using the Momentum field of the OptimizerParameters option.
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• "rmsprop" — Use the RMSProp optimizer. You can specify the decay rate of the squared gradient
moving average using the SquaredGradientDecayFactor fields of the OptimizerParameters
option.

For more information about these optimizers, see “Stochastic Gradient Descent” in the Algorithms
section of trainingOptions in Deep Learning Toolbox.
Example: 'Optimizer',"sgdm"

OptimizerParameters — Applicable parameters for optimizer
OptimizerParameters object

Applicable parameters for the optimizer, specified as an OptimizerParameters object with the
following parameters.

Parameter Description
Momentum Contribution of previous step, specified as a

scalar from 0 to 1. A value of 0 means no
contribution from the previous step. A value of 1
means maximal contribution.

This parameter applies only when Optimizer is
"sgdm". In that case, the default value is 0.9.
This default value works well for most problems.

Epsilon Denominator offset, specified as a positive scalar.
The optimizer adds this offset to the denominator
in the network parameter updates to avoid
division by zero.

This parameter applies only when Optimizer is
"adam" or "rmsprop". In that case, the default
value is 10–8. This default value works well for
most problems.

GradientDecayFactor Decay rate of gradient moving average, specified
as a positive scalar from 0 to 1.

This parameter applies only when Optimizer is
"adam". In that case, the default value is 0.9.
This default value works well for most problems.

SquaredGradientDecayFactor Decay rate of squared gradient moving average,
specified as a positive scalar from 0 to 1.

This parameter applies only when Optimizer is
"adam" or "rmsprop". In that case, the default
value is 0.999. This default value works well for
most problems.

When a particular property of OptimizerParameters is not applicable to the optimizer type
specified in the Optimizer option, that property is set to "Not applicable".

To change the default values, create an rlRepresentationOptions set and use dot notation to
access and change the properties of OptimizerParameters.
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repOpts = rlRepresentationOptions;
repOpts.OptimizerParameters.GradientDecayFactor = 0.95;

GradientThreshold — Threshold value for gradient
Inf (default) | positive scalar

Threshold value for the representation gradient, specified as Inf or a positive scalar. If the gradient
exceeds this value, the gradient is clipped as specified by the GradientThresholdMethod option.
Clipping the gradient limits how much the network parameters change in a training iteration.
Example: 'GradientThreshold',1

GradientThresholdMethod — Gradient threshold method
"l2norm" (default) | "global-l2norm" | "absolute-value"

Gradient threshold method used to clip gradient values that exceed the gradient threshold, specified
as one of the following values.

• "l2norm" — If the L2 norm of the gradient of a learnable parameter is larger than
GradientThreshold, then scale the gradient so that the L2 norm equals GradientThreshold.

• "global-l2norm" — If the global L2 norm, L, is larger than GradientThreshold, then scale all
gradients by a factor of GradientThreshold/L. The global L2 norm considers all learnable
parameters.

• "absolute-value" — If the absolute value of an individual partial derivative in the gradient of a
learnable parameter is larger than GradientThreshold, then scale the partial derivative to have
magnitude equal to GradientThreshold and retain the sign of the partial derivative.

For more information, see “Gradient Clipping” in the Algorithms section of trainingOptions in
Deep Learning Toolbox.
Example: 'GradientThresholdMethod',"absolute-value"

L2RegularizationFactor — Factor for L2 regularization
0.0001 (default) | nonnegative scalar

Factor for L2 regularization (weight decay), specified as a nonnegative scalar. For more information,
see “L2 Regularization” in the Algorithms section of trainingOptions in Deep Learning Toolbox.

To avoid overfitting when using a representation with many parameters, consider increasing the
L2RegularizationFactor option.
Example: 'L2RegularizationFactor',0.0005

UseDevice — Computation device for training
"cpu" (default) | "gpu"

Computation device used to perform deep neural network operations such as gradient computation,
parameter update and prediction during training. It is specified as either "cpu" or "gpu".

The "gpu" option requires both Parallel Computing Toolbox™ software and a CUDA® enabled
NVIDIA® GPU. For more information on supported GPUs see “GPU Support by Release” (Parallel
Computing Toolbox).

You can use gpuDevice (Parallel Computing Toolbox) to query or select a local GPU device to be
used with MATLAB.
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Note Training or simulating an agent on a GPU involves device-specific numerical round off errors.
These errors can produce different results compared to performing the same operations a CPU.

Note that if you want to use parallel processing to speed up training, you do not need to set
UseDevice. Instead, when training your agent, use an rlTrainingOptions object in which the
UseParallel option is set to true. For more information about training using multicore processors
and GPUs for training, see “Train Agents Using Parallel Computing and GPUs”.
Example: 'UseDevice',"gpu"

Object Functions
rlValueRepresentation Value function critic representation for reinforcement learning

agents
rlQValueRepresentation Q-Value function critic representation for reinforcement

learning agents
rlDeterministicActorRepresentation Deterministic actor representation for reinforcement learning

agents
rlStochasticActorRepresentation Stochastic actor representation for reinforcement learning

agents

Examples

Configure Options for Creating Representation

Create an options set for creating a critic or actor representation for a reinforcement learning agent.
Set the learning rate for the representation to 0.05, and set the gradient threshold to 1. You can set
the options using Name,Value pairs when you create the options set. Any options that you do not
explicitly set have their default values.

repOpts = rlRepresentationOptions('LearnRate',5e-2,...
                                  'GradientThreshold',1)

repOpts = 
  rlRepresentationOptions with properties:

                  LearnRate: 0.0500
          GradientThreshold: 1
    GradientThresholdMethod: "l2norm"
     L2RegularizationFactor: 1.0000e-04
                  UseDevice: "cpu"
                  Optimizer: "adam"
        OptimizerParameters: [1x1 rl.option.OptimizerParameters]

Alternatively, create a default options set and use dot notation to change some of the values.

repOpts = rlRepresentationOptions;
repOpts.LearnRate = 5e-2;
repOpts.GradientThreshold = 1

repOpts = 
  rlRepresentationOptions with properties:
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                  LearnRate: 0.0500
          GradientThreshold: 1
    GradientThresholdMethod: "l2norm"
     L2RegularizationFactor: 1.0000e-04
                  UseDevice: "cpu"
                  Optimizer: "adam"
        OptimizerParameters: [1x1 rl.option.OptimizerParameters]

If you want to change the properties of the OptimizerParameters option, use dot notation to
access them.

repOpts.OptimizerParameters.Epsilon = 1e-7;
repOpts.OptimizerParameters

ans = 
  OptimizerParameters with properties:

                      Momentum: "Not applicable"
                       Epsilon: 1.0000e-07
           GradientDecayFactor: 0.9000
    SquaredGradientDecayFactor: 0.9990

See Also
Topics
“Create Policy and Value Function Representations”
“Reinforcement Learning Agents”

Introduced in R2019a
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rlSACAgent
Soft actor-critic reinforcement learning agent

Description
The soft actor-critic (SAC) algorithm is a model-free, online, off-policy, actor-critic reinforcement
learning method. The SAC algorithm computes an optimal policy that maximizes both the long-term
expected reward and the entropy of the policy. The policy entropy is a measure of policy uncertainty
given the state. A higher entropy value promotes more exploration. Maximizing both the reward and
the entropy balances exploration and exploitation of the environment. The action space can only be
continuous.

For more information, see “Soft Actor-Critic Agents”.

For more information on the different types of reinforcement learning agents, see “Reinforcement
Learning Agents”.

Creation
Syntax
agent = rlSACAgent(observationInfo,actionInfo)
agent = rlSACAgent(observationInfo,actionInfo,initOptions)

agent = rlSACAgent(actor,critics)

agent = rlSACAgent( ___ ,agentOptions)

Description
Create Agent from Observation and Action Specifications

agent = rlSACAgent(observationInfo,actionInfo) creates a SAC agent for an environment
with the given observation and action specifications, using default initialization options. The actor
and critic representations in the agent use default deep neural networks built using the observation
specification observationInfo and action specification actionInfo.

agent = rlSACAgent(observationInfo,actionInfo,initOptions) creates a SAC agent with
deep neural network representations configured using the specified initialization options
(initOptions).
Create Agent from Actor and Critic Representations

agent = rlSACAgent(actor,critics) creates a SAC agent with the specified actor and critic
networks and default agent options.
Specify Agent Options

agent = rlSACAgent( ___ ,agentOptions) sets the AgentOptions property for any of the
previous syntaxes.
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Input Arguments

observationInfo — Observation specifications
specification object | array of specification objects

Observation specifications, specified as a reinforcement learning specification object or an array of
specification objects defining properties such as dimensions, data type, and names of the observation
signals.

You can extract observationInfo from an existing environment or agent using
getObservationInfo. You can also construct the specifications manually using rlFiniteSetSpec
or rlNumericSpec.

actionInfo — Action specification
rlNumericSpec object

Action specification for a continuous action space, specified as an rlNumericSpec object defining
properties such as dimensions, data type and name of the action signals.

You can extract actionInfo from an existing environment or agent using getActionInfo. You can
also construct the specification manually using rlFiniteSetSpec or rlNumericSpec.

initOptions — Representation initialization options
rlAgentInitializationOptions object

Representation initialization options, specified as an rlAgentInitializationOptions object.

actor — Actor network representation
rlStochasticActorRepresentation object

Actor network representation, specified as an rlStochasticActorRepresentation object.

For more information on creating actor representations, see “Create Policy and Value Function
Representations”.

critics — Critic network representations
rlQValueRepresentation object | two-element row vector of rlQValueRepresentation objects

Critic network representations, specified as one of the following:

• rlQValueRepresentation object — Create a SAC agent with a single Q-value function.
• Two-element row vector of rlQValueRepresentation objects — Create a SAC agent with two

critic value functions. The two critic networks must be unique rlQValueRepresentation
objects with the same observation and action specifications. The representations can either have
different structures or the same structure but with different initial parameters.

For a SAC agent, each critic must be a single-output rlQValueRepresentation object that takes
both the action and observations as inputs.

For more information on creating critic representations, see “Create Policy and Value Function
Representations”.
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Properties
AgentOptions — Agent options
rlSACAgentOptions object

Agent options, specified as an rlSACAgentOptions object.

If you create a SAC agent with default actor and critic representations that use recurrent neural
networks, the default value of AgentOptions.SequenceLength is 32.

ExperienceBuffer — Experience buffer
ExperienceBuffer object

Experience buffer, specified as an ExperienceBuffer object. During training the agent stores each
of its experiences (S,A,R,S') in a buffer. Here:

• S is the current observation of the environment.
• A is the action taken by the agent.
• R is the reward for taking action A.
• S' is the next observation after taking action A.

For more information on how the agent samples experience from the buffer during training, see “Soft
Actor-Critic Agents”.

Object Functions
train Train reinforcement learning agents within a specified environment
sim Simulate trained reinforcement learning agents within specified

environment
getAction Obtain action from agent or actor representation given environment

observations
getActor Get actor representation from reinforcement learning agent
setActor Set actor representation of reinforcement learning agent
getCritic Get critic representation from reinforcement learning agent
setCritic Set critic representation of reinforcement learning agent
generatePolicyFunction Create function that evaluates trained policy of reinforcement learning

agent

Examples

Create SAC Agent from Observation and Action Specifications

Create environment and obtain observation and action specifications. For this example, load the
environment used in the example “Train DDPG Agent to Control Double Integrator System”. The
observation from the environment is a vector containing the position and velocity of a mass. The
action is a scalar representing a force, applied to the mass, ranging continuously from -2 to 2
Newton.

env = rlPredefinedEnv("DoubleIntegrator-Continuous");
obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);
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The agent creation function initializes the actor and critic networks randomly. You can ensure
reproducibility by fixing the seed of the random generator. To do so, uncomment the following line.

% rng(0)

Create a SAC agent from the environment observation and action specifications.

agent = rlSACAgent(obsInfo,actInfo);

To check your agent, use getAction to return the action from a random observation.

getAction(agent,{rand(obsInfo(1).Dimension)})

ans = 1x1 cell array
    {[0.0546]}

You can now test and train the agent within the environment.

Create SAC Agent Using Initialization Options

Create an environment with a continuous action space and obtain its observation and action
specifications. For this example, load the environment used in the example “Train DDPG Agent to
Control Double Integrator System”. The observation from the environment is a vector containing the
position and velocity of a mass. The action is a scalar representing a force, applied to the mass,
ranging continuously from -2 to 2 Newton.

env = rlPredefinedEnv("DoubleIntegrator-Continuous");
obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

Create an agent initialization option object, specifying that each hidden fully connected layer in the
network must have 128 neurons.

initOpts = rlAgentInitializationOptions('NumHiddenUnit',128);

The agent creation function initializes the actor and critic networks randomly. You can ensure
reproducibility by fixing the seed of the random generator. To do so, uncomment the following line.

% rng(0)

Create a SAC agent from the environment observation and action specifications using the
initialization options.

agent = rlSACAgent(obsInfo,actInfo,initOpts);

Extract the deep neural network from the actor.

actorNet = getModel(getActor(agent));

Extract the deep neural networks from the two critics. Note that getModel(critics) only returns
the first critic network.

critics = getCritic(agent);
criticNet1 = getModel(critics(1));
criticNet2 = getModel(critics(2));
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Display the layers of the first critic network, and verify that each hidden fully connected layer has 128
neurons.

criticNet1.Layers

ans = 
  9x1 Layer array with layers:

     1   'input_1'       Feature Input     2 features
     2   'fc_1'          Fully Connected   128 fully connected layer
     3   'input_2'       Feature Input     1 features
     4   'fc_2'          Fully Connected   128 fully connected layer
     5   'concat'        Concatenation     Concatenation of 2 inputs along dimension 1
     6   'relu_body'     ReLU              ReLU
     7   'fc_body'       Fully Connected   128 fully connected layer
     8   'body_output'   ReLU              ReLU
     9   'output'        Fully Connected   1 fully connected layer

Plot the networks of the actor and of the second critic.

plot(layerGraph(actorNet))

plot(layerGraph(criticNet2))
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To check your agent, use getAction to return the action from a random observation.

getAction(agent,{rand(obsInfo(1).Dimension)})

ans = 1x1 cell array
    {[-0.9867]}

You can now test and train the agent within the environment.

Create SAC Agent from Actor and Critics

Create an environment and obtain observation and action specifications. For this example, load the
environment used in the example “Train DDPG Agent to Control Double Integrator System”. The
observations from the environment is a vector containing the position and velocity of a mass. The
action is a scalar representing a force, applied to the mass, ranging continuously from -2 to 2
Newton.

env = rlPredefinedEnv("DoubleIntegrator-Continuous");
obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

Obtain the number of observations and the number of actions.
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numObs = obsInfo.Dimension(1);
numAct = numel(actInfo);

Create two Q-value critic representations. First, create a critic deep neural network structure.

statePath1 = [
    featureInputLayer(numObs,'Normalization','none','Name','observation')
    fullyConnectedLayer(400,'Name','CriticStateFC1')
    reluLayer('Name','CriticStateRelu1')
    fullyConnectedLayer(300,'Name','CriticStateFC2')
    ];
actionPath1 = [
    featureInputLayer(numAct,'Normalization','none','Name','action')
    fullyConnectedLayer(300,'Name','CriticActionFC1')
    ];
commonPath1 = [
    additionLayer(2,'Name','add')
    reluLayer('Name','CriticCommonRelu1')
    fullyConnectedLayer(1,'Name','CriticOutput')
    ];

criticNet = layerGraph(statePath1);
criticNet = addLayers(criticNet,actionPath1);
criticNet = addLayers(criticNet,commonPath1);
criticNet = connectLayers(criticNet,'CriticStateFC2','add/in1');
criticNet = connectLayers(criticNet,'CriticActionFC1','add/in2');

Create the critic representations. Use the same network structure for both critics. The SAC agent
initializes the two networks using different default parameters.

criticOptions = rlRepresentationOptions('Optimizer','adam','LearnRate',1e-3,... 
                                        'GradientThreshold',1,'L2RegularizationFactor',2e-4);
critic1 = rlQValueRepresentation(criticNet,obsInfo,actInfo,...
    'Observation',{'observation'},'Action',{'action'},criticOptions);
critic2 = rlQValueRepresentation(criticNet,obsInfo,actInfo,...
    'Observation',{'observation'},'Action',{'action'},criticOptions);

Create an actor deep neural network. Do not add a tanhLayer or scalingLayer in the mean output
path. The SAC agent internally transforms the unbounded Gaussian distribution to the bounded
distribution to compute the probability density function and entropy properly.

statePath = [
    featureInputLayer(numObs,'Normalization','none','Name','observation')
    fullyConnectedLayer(400, 'Name','commonFC1')
    reluLayer('Name','CommonRelu')];
meanPath = [
    fullyConnectedLayer(300,'Name','MeanFC1')
    reluLayer('Name','MeanRelu')
    fullyConnectedLayer(numAct,'Name','Mean')
    ];
stdPath = [
    fullyConnectedLayer(300,'Name','StdFC1')
    reluLayer('Name','StdRelu')
    fullyConnectedLayer(numAct,'Name','StdFC2')
    softplusLayer('Name','StandardDeviation')];

concatPath = concatenationLayer(1,2,'Name','GaussianParameters');
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actorNetwork = layerGraph(statePath);
actorNetwork = addLayers(actorNetwork,meanPath);
actorNetwork = addLayers(actorNetwork,stdPath);
actorNetwork = addLayers(actorNetwork,concatPath);
actorNetwork = connectLayers(actorNetwork,'CommonRelu','MeanFC1/in');
actorNetwork = connectLayers(actorNetwork,'CommonRelu','StdFC1/in');
actorNetwork = connectLayers(actorNetwork,'Mean','GaussianParameters/in1');
actorNetwork = connectLayers(actorNetwork,'StandardDeviation','GaussianParameters/in2');

Create a stochastic actor representation using the deep neural network.

actorOptions = rlRepresentationOptions('Optimizer','adam','LearnRate',1e-3,...
                                       'GradientThreshold',1,'L2RegularizationFactor',1e-5);

actor = rlStochasticActorRepresentation(actorNetwork,obsInfo,actInfo,actorOptions,...
    'Observation',{'observation'});

Specify agent options.

agentOptions = rlSACAgentOptions;
agentOptions.SampleTime = env.Ts;
agentOptions.DiscountFactor = 0.99;
agentOptions.TargetSmoothFactor = 1e-3;
agentOptions.ExperienceBufferLength = 1e6;
agentOptions.MiniBatchSize = 32;

Create SAC agent using actor, critics, and options.

agent = rlSACAgent(actor,[critic1 critic2],agentOptions);

To check your agent, use getAction to return the action from a random observation.

getAction(agent,{rand(obsInfo(1).Dimension)})

ans = 1x1 cell array
    {[0.1259]}

You can now test and train the agent within the environment.

Create SAC Agent using Recurrent Neural Networks

For this example, load the environment used in the example “Train DDPG Agent to Control Double
Integrator System”. The observations from the environment is a vector containing the position and
velocity of a mass. The action is a scalar representing a force, applied to the mass, ranging
continuously from -2 to 2 Newton.

env = rlPredefinedEnv("DoubleIntegrator-Continuous");
obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

Obtain the number of observations and the number of actions.

numObs = obsInfo.Dimension(1);
numAct = numel(actInfo);
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Create two Q-value critic representations. First, create a critic deep neural network structure. To
create a recurrent neural network, use sequenceInputLayer as the input layer and include an
lstmLayer as one of the other network layers.

statePath1 = [
    sequenceInputLayer(numObs,'Normalization','none','Name','observation')
    fullyConnectedLayer(400,'Name','CriticStateFC1')
    reluLayer('Name','CriticStateRelu1')
    fullyConnectedLayer(300,'Name','CriticStateFC2')
    ];
actionPath1 = [
    sequenceInputLayer(numAct,'Normalization','none','Name','action')
    fullyConnectedLayer(300,'Name','CriticActionFC1')
    ];
commonPath1 = [
    additionLayer(2,'Name','add')
    lstmLayer(8,'OutputMode','sequence','Name','lstm')
    reluLayer('Name','CriticCommonRelu1')
    fullyConnectedLayer(1,'Name','CriticOutput')
    ];

criticNet = layerGraph(statePath1);
criticNet = addLayers(criticNet,actionPath1);
criticNet = addLayers(criticNet,commonPath1);
criticNet = connectLayers(criticNet,'CriticStateFC2','add/in1');
criticNet = connectLayers(criticNet,'CriticActionFC1','add/in2');

Create the critic representations. Use the same network structure for both critics. The SAC agent
initializes the two networks using different default parameters.

criticOptions = rlRepresentationOptions('Optimizer','adam','LearnRate',1e-3,... 
                                        'GradientThreshold',1,'L2RegularizationFactor',2e-4);
critic1 = rlQValueRepresentation(criticNet,obsInfo,actInfo,...
    'Observation',{'observation'},'Action',{'action'},criticOptions);
critic2 = rlQValueRepresentation(criticNet,obsInfo,actInfo,...
    'Observation',{'observation'},'Action',{'action'},criticOptions);

Create an actor deep neural network. Since the critic has a recurrent network, the actor must have a
recurrent network too. Do not add a tanhLayer or scalingLayer in the mean output path. The
SAC agent internally transforms the unbounded Gaussian distribution to the bounded distribution to
compute the probability density function and entropy properly.

statePath = [
    sequenceInputLayer(numObs,'Normalization','none','Name','observation')
    fullyConnectedLayer(400, 'Name','commonFC1')
    lstmLayer(8,'OutputMode','sequence','Name','lstm')    
    reluLayer('Name','CommonRelu')];
meanPath = [
    fullyConnectedLayer(300,'Name','MeanFC1')
    reluLayer('Name','MeanRelu')
    fullyConnectedLayer(numAct,'Name','Mean')
    ];
stdPath = [
    fullyConnectedLayer(300,'Name','StdFC1')
    reluLayer('Name','StdRelu')
    fullyConnectedLayer(numAct,'Name','StdFC2')
    softplusLayer('Name','StandardDeviation')];
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concatPath = concatenationLayer(1,2,'Name','GaussianParameters');

actorNetwork = layerGraph(statePath);
actorNetwork = addLayers(actorNetwork,meanPath);
actorNetwork = addLayers(actorNetwork,stdPath);
actorNetwork = addLayers(actorNetwork,concatPath);
actorNetwork = connectLayers(actorNetwork,'CommonRelu','MeanFC1/in');
actorNetwork = connectLayers(actorNetwork,'CommonRelu','StdFC1/in');
actorNetwork = connectLayers(actorNetwork,'Mean','GaussianParameters/in1');
actorNetwork = connectLayers(actorNetwork,'StandardDeviation','GaussianParameters/in2');

Create a stochastic actor representation using the deep neural network.

actorOptions = rlRepresentationOptions('Optimizer','adam','LearnRate',1e-3,...
                                       'GradientThreshold',1,'L2RegularizationFactor',1e-5);

actor = rlStochasticActorRepresentation(actorNetwork,obsInfo,actInfo,actorOptions,...
    'Observation',{'observation'});

Specify agent options. To use a recurrent neural network, you must specify a SequenceLength
greater than 1.

agentOptions = rlSACAgentOptions;
agentOptions.SampleTime = env.Ts;
agentOptions.DiscountFactor = 0.99;
agentOptions.TargetSmoothFactor = 1e-3;
agentOptions.ExperienceBufferLength = 1e6;
agentOptions.SequenceLength = 32;
agentOptions.MiniBatchSize = 32;

Create SAC agent using actor, critics, and options.

agent = rlSACAgent(actor,[critic1 critic2],agentOptions);

To check your agent, use getAction to return the action from a random observation.

getAction(agent,{rand(obsInfo.Dimension)})

ans = 1x1 cell array
    {[0.6552]}

You can now test and train the agent within the environment.

See Also
rlAgentInitializationOptions | rlSACAgentOptions |
rlStochasticActorRepresentation | rlValueRepresentation | Deep Network Designer

Topics
“Soft Actor-Critic Agents”
“Reinforcement Learning Agents”
“Train Reinforcement Learning Agents”

Introduced in R2020b
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rlSACAgentOptions
Options for SAC agent

Description
Use an rlSACAgentOptions object to specify options for soft actor-critic (SAC) agents. To create a
SAC agent, use rlSACAgent.

For more information, see “Soft Actor-Critic Agents”.

For more information on the different types of reinforcement learning agents, see “Reinforcement
Learning Agents”.

Creation

Syntax
opt = rlSACAgentOptions
opt = rlSACAgentOptions(Name,Value)

Description

opt = rlSACAgentOptions creates an options object for use as an argument when creating a SAC
agent using all default options. You can modify the object properties using dot notation.

opt = rlSACAgentOptions(Name,Value) sets option properties on page 3-31 using name-value
pairs. For example, rlSACAgentOptions('DiscountFactor',0.95) creates an option set with a
discount factor of 0.95. You can specify multiple name-value pairs. Enclose each property name in
quotes.

Properties
EntropyWeightOptions — Entropy tuning options
EntropyWeightOptions object

Entropy tuning options, specified as an EntropyWeightOptions object with the following
properties.

EntropyWeight — Initial entropy component weight
1 (default) | positive scalar

Initial entropy component weight, specified as a positive scalar.

LearnRate — Optimizer learning rate
3e-4 (default) | nonnegative scalar

Optimizer learning rate, specified as a nonnegative scalar. If LearnRate is zero, the EntropyWeight
value is fixed during training and the TargetEntropy value is ignored.
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TargetEntropy — Target entropy value
[] (default) | scalar

Target entropy value for tuning entropy weight, specified as a scalar. A higher target entropy value
encourages more exploration.

If you do not specify TargetEntropy, the agent uses –A as the target value, where A is the number
of actions.

Optimizer — Optimizer for entropy tuning
"adam" (default) | "sgdm" | "rmsprop"

Optimizer for entropy tuning, specified as one of the following strings.

• "adam" — Use the Adam optimizer. You can specify the decay rates of the gradient and squared
gradient moving averages using the GradientDecayFactor and
SquaredGradientDecayFactor fields of the OptimizerParameters option.

• "sgdm" — Use the stochastic gradient descent with momentum (SGDM) optimizer. You can specify
the momentum value using the Momentum field of the OptimizerParameters option.

• "rmsprop" — Use the RMSProp optimizer. You can specify the decay rate of the squared gradient
moving average using the SquaredGradientDecayFactor fields of the OptimizerParameters
option.

For more information about these optimizers, see “Stochastic Gradient Descent” in Deep Learning
Toolbox.

GradientThreshold — Threshold value for gradient
Inf (default) | positive scalar

Threshold value for the entropy gradient, specified as Inf or a positive scalar. If the gradient exceeds
this value, the gradient is clipped.

OptimizerParameters — Applicable parameters for optimizer
OptimizerParameters object

Applicable parameters for the optimizer, specified as an OptimizerParameters object with the
following parameters. The default parameter values work well for most problems.

Parameter Description Default
Momentum Contribution of previous step,

specified as a scalar from 0 to 1.
A value of 0 means no
contribution from the previous
step. A value of 1 means
maximal contribution.

This parameter applies only
when Optimizer is "sgdm".

0.9
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Parameter Description Default
Epsilon Denominator offset, specified as

a positive scalar. The optimizer
adds this offset to the
denominator in the network
parameter updates to avoid
division by zero.

This parameter applies only
when Optimizer is "adam" or
"rmsprop".

1e-8

GradientDecayFactor Decay rate of gradient moving
average, specified as a positive
scalar from 0 to 1.

This parameter applies only
when Optimizer is "adam".

0.9

SquaredGradientDecayFact
or

Decay rate of squared gradient
moving average, specified as a
positive scalar from 0 to 1.

This parameter applies only
when Optimizer is "adam" or
"rmsprop".

0.999

When a particular property of OptimizerParameters is not applicable to the optimizer type
specified in the Optimizer option, that property is set to "Not applicable".

To change the default values, access the properties of OptimizerParameters using dot notation.
opt = rlSACAgentOptions;
opt.EntropyWeightOptions.OptimizerParameters.GradientDecayFactor = 0.95;

PolicyUpdateFrequency — Number of steps between actor policy updates
1 (default) | positive integer

Number of steps between actor policy updates, specified as a positive integer. For more information,
see “Training Algorithm”.

CriticUpdateFrequency — Number of steps between critic updates
1 (default) | positive integer

Number of steps between critic updates, specified as a positive integer. For more information, see
“Training Algorithm”.

TargetUpdateFrequency — Number of steps between target critic updates
1 (default) | positive integer

Number of steps between target critic updates, specified as a positive integer. For more information,
see “Target Update Methods”.

UseDeterministicExploitation — Use action with maximum likelihood
false (default) | true
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Option to return the action with maximum likelihood for simulation and policy generation, specified
as a logical value. When UseDeterministicExploitation is set to true, the action with
maximum likelihood is always used in sim and generatePolicyFunction, which causes the agent
to behave deterministically.

When UseDeterministicExploitation is set to false, the agent samples actions from
probability distributions, which causes the agent to behave stochastically.

TargetSmoothFactor — Smoothing factor for target critic updates
1e-3 (default) | positive scalar less than or equal to 1

Smoothing factor for target critic updates, specified as a positive scalar less than or equal to 1. For
more information, see “Target Update Methods”.

SequenceLength — Maximum batch-training trajectory length when using RNN
1 (default) | positive integer

Maximum batch-training trajectory length when using a recurrent neural network, specified as a
positive integer. This value must be greater than 1 when using a recurrent neural network and 1
otherwise.

MiniBatchSize — Size of random experience mini-batch
64 (default) | positive integer

Size of random experience mini-batch, specified as a positive integer. During each training episode,
the agent randomly samples experiences from the experience buffer when computing gradients for
updating the actor and critics. Large mini-batches reduce the variance when computing gradients but
increase the computational effort.

ResetExperienceBufferBeforeTraining — Option for clearing the experience buffer
true (default) | false

Option for clearing the experience buffer before training, specified as a logical value.

NumStepsToLookAhead — Number of future rewards used to estimate the value of the policy
1 (default) | positive integer

Number of future rewards used to estimate the value of the policy, specified as a positive integer. For
more information, see [1], Chapter 7.

Note that if parallel training is enabled (that is if an rlTrainingOptions option object in which the
UseParallel property is set to true is passed to train) then NumStepsToLookAhead must be set
to 1, otherwise an error is generated. This guarantees that experiences are stored contiguously.

.

ExperienceBufferLength — Experience buffer size
10000 (default) | positive integer

Experience buffer size, specified as a positive integer. During training, the agent computes updates
using a mini-batch of experiences randomly sampled from the buffer.

SampleTime — Sample time of agent
1 (default) | positive scalar
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Sample time of agent, specified as a positive scalar.

Within a Simulink environment, the agent gets executed every SampleTime seconds of simulation
time.

Within a MATLAB environment, the agent gets executed every time the environment advances.
However, SampleTime is the time interval between consecutive elements in the output experience
returned by sim or train.

DiscountFactor — Discount factor
0.99 (default) | positive scalar less than or equal to 1

Discount factor applied to future rewards during training, specified as a positive scalar less than or
equal to 1.

SaveExperienceBufferWithAgent — Option for saving the experience buffer
false (default) | true

Option for saving the experience buffer data when saving the agent, specified as a logical value. This
option applies both when saving candidate agents during training and when saving agents using the
save function.

For some agents, such as those with a large experience buffer and image-based observations, the
memory required for saving their experience buffer is large. In such cases, to not save the experience
buffer data, set SaveExperienceBufferWithAgent to false.

If you plan to further train your saved agent, you can start training with the previous experience
buffer as a starting point. In this case, set SaveExperienceBufferWithAgent to true.

NumWarmStartSteps — Number of actions to take before updating actor and critic
positive integer

Number of actions to take before updating actor and critics, specified as a positive integer. By
default, the NumWarmStartSteps value is equal to the MiniBatchSize value.

NumGradientStepsPerUpdate — Number of gradient steps when updating actor and critics
1 (default) | positive integer

Number of gradient steps to take when updating actor and critics, specified as a positive integer.

Object Functions
rlSACAgent Soft actor-critic reinforcement learning agent

Examples

Create SAC Agent Options Object

Create a SAC agent options object, specifying the discount factor.

opt = rlSACAgentOptions('DiscountFactor',0.95)

opt = 
  rlSACAgentOptions with properties:
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                   EntropyWeightOptions: [1x1 rl.option.EntropyWeightOptions]
                  PolicyUpdateFrequency: 1
                  CriticUpdateFrequency: 1
                      NumWarmStartSteps: 64
              NumGradientStepsPerUpdate: 1
           UseDeterministicExploitation: 0
                     TargetSmoothFactor: 1.0000e-03
                  TargetUpdateFrequency: 1
    ResetExperienceBufferBeforeTraining: 1
          SaveExperienceBufferWithAgent: 0
                         SequenceLength: 1
                          MiniBatchSize: 64
                    NumStepsToLookAhead: 1
                 ExperienceBufferLength: 10000
                             SampleTime: 1
                         DiscountFactor: 0.9500

You can modify options using dot notation. For example, set the agent sample time to 0.5.

opt.SampleTime = 0.5;

For SAC agents, configure the entropy weight optimizer using the options in
EntropyWeightOptions. For example, set the target entropy value to –5.

opt.EntropyWeightOptions.TargetEntropy = -5;

References
[1] Sutton, Richard S., and Andrew G. Barto. Reinforcement Learning: An Introduction. Second

edition. Adaptive Computation and Machine Learning. Cambridge, Mass: The MIT Press,
2018.

See Also
rlSACAgent

Topics
“Soft Actor-Critic Agents”

Introduced in R2020b
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rlSARSAAgent
SARSA reinforcement learning agent

Description
The SARSA algorithm is a model-free, online, on-policy reinforcement learning method. A SARSA
agent is a value-based reinforcement learning agent which trains a critic to estimate the return or
future rewards.

For more information on SARSA agents, see “SARSA Agents”.

For more information on the different types of reinforcement learning agents, see “Reinforcement
Learning Agents”.

Creation

Syntax
agent = rlSARSAAgent(critic,agentOptions)

Description

agent = rlSARSAAgent(critic,agentOptions) creates a SARSA agent with the specified critic
network and sets the AgentOptions property.

Input Arguments

critic — Critic network representation
rlQValueRepresentation object

Critic network representation, specified as an rlQValueRepresentation object. For more
information on creating critic representations, see “Create Policy and Value Function
Representations”.

Properties
AgentOptions — Agent options
rlSARSAAgentOptions object

Agent options, specified as an rlSARSAAgentOptions object.

Object Functions
train Train reinforcement learning agents within a specified environment
sim Simulate trained reinforcement learning agents within specified

environment

3 Objects

3-142



getAction Obtain action from agent or actor representation given environment
observations

getActor Get actor representation from reinforcement learning agent
setActor Set actor representation of reinforcement learning agent
getCritic Get critic representation from reinforcement learning agent
setCritic Set critic representation of reinforcement learning agent
generatePolicyFunction Create function that evaluates trained policy of reinforcement learning

agent

Examples

Create a SARSA Agent

Create or load an environment interface. For this example load the Basic Grid World environment
interface.

env = rlPredefinedEnv("BasicGridWorld");

Create a critic value function representation using a Q table derived from the environment
observation and action specifications.

qTable = rlTable(getObservationInfo(env),getActionInfo(env));
critic = rlQValueRepresentation(qTable,getObservationInfo(env),getActionInfo(env));

Create a SARSA agent using the specified critic value function and an epsilon value of 0.05.

opt = rlSARSAAgentOptions;
opt.EpsilonGreedyExploration.Epsilon = 0.05;

agent = rlSARSAAgent(critic,opt)

agent = 
  rlSARSAAgent with properties:

    AgentOptions: [1x1 rl.option.rlSARSAAgentOptions]

To check your agent, use getAction to return the action from a random observation.

getAction(agent,{randi(25)})

ans = 1

You can now test and train the agent against the environment.

See Also
rlSARSAAgentOptions

Topics
“SARSA Agents”
“Reinforcement Learning Agents”
“Train Reinforcement Learning Agents”
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rlSARSAAgentOptions
Options for SARSA agent

Description
Use an rlSARSAAgentOptions object to specify options for creating SARSA agents. To create a
SARSA agent, use rlSARSAAgent

For more information on SARSA agents, see “SARSA Agents”.

For more information on the different types of reinforcement learning agents, see “Reinforcement
Learning Agents”.

Creation

Syntax
opt = rlSARSAAgentOptions
opt = rlSARSAAgentOptions(Name,Value)

Description

opt = rlSARSAAgentOptions creates an rlSARSAAgentOptions object for use as an argument
when creating a SARSA agent using all default settings. You can modify the object properties using
dot notation.

opt = rlSARSAAgentOptions(Name,Value) sets option properties on page 3-145 using name-
value pairs. For example, rlSARSAAgentOptions('DiscountFactor',0.95) creates an option
set with a discount factor of 0.95. You can specify multiple name-value pairs. Enclose each property
name in quotes.

Properties
EpsilonGreedyExploration — Options for epsilon-greedy exploration
EpsilonGreedyExploration object

Options for epsilon-greedy exploration, specified as an EpsilonGreedyExploration object with the
following properties.
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Property Description Default Value
Epsilon Probability threshold to either

randomly select an action or
select the action that maximizes
the state-action value function.
A larger value of Epsilon
means that the agent randomly
explores the action space at a
higher rate.

1

EpsilonMin Minimum value of Epsilon 0.01
EpsilonDecay Decay rate 0.0050

At the end of each training time step, if Epsilon is greater than EpsilonMin, then it is updated
using the following formula.

Epsilon = Epsilon*(1-EpsilonDecay)

If your agent converges on local optima too quickly, you can promote agent exploration by increasing
Epsilon.

To specify exploration options, use dot notation after creating the rlSARSAAgentOptions object
opt. For example, set the epsilon value to 0.9.
opt.EpsilonGreedyExploration.Epsilon = 0.9;

SampleTime — Sample time of agent
1 (default) | positive scalar

Sample time of agent, specified as a positive scalar.

Within a Simulink environment, the agent gets executed every SampleTime seconds of simulation
time.

Within a MATLAB environment, the agent gets executed every time the environment advances.
However, SampleTime is the time interval between consecutive elements in the output experience
returned by sim or train.

DiscountFactor — Discount factor
0.99 (default) | positive scalar less than or equal to 1

Discount factor applied to future rewards during training, specified as a positive scalar less than or
equal to 1.

Object Functions
rlSARSAAgent SARSA reinforcement learning agent

Examples

Create a SARSA Agent Options Object

This example shows how to create a SARSA agent option object.
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Create an rlSARSAAgentOptions object that specifies the agent sample time.

opt = rlSARSAAgentOptions('SampleTime',0.5)

opt = 
  rlSARSAAgentOptions with properties:

    EpsilonGreedyExploration: [1x1 rl.option.EpsilonGreedyExploration]
                  SampleTime: 0.5000
              DiscountFactor: 0.9900

You can modify options using dot notation. For example, set the agent discount factor to 0.95.

opt.DiscountFactor = 0.95;

See Also
Topics
“SARSA Agents”

Introduced in R2019a
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rlSimulationOptions
Options for simulating a reinforcement learning agent within an environment

Description
Use an rlSimulationOptions object to specify simulation options for simulating a reinforcement
learning agent within an environment. To perform the simulation, use sim.

For more information on agents training and simulation, see “Train Reinforcement Learning Agents”.

Creation

Syntax
simOpts = rlSimulationOptions
opt = rlSimulationOptions(Name,Value)

Description

simOpts = rlSimulationOptions returns the default options for simulating a reinforcement
learning environment against an agent. Use simulation options to specify parameters about the
simulation such as the maximum number of steps to run per simulation and the number of
simulations to run. After configuring the options, use simOpts as an input argument for sim.

opt = rlSimulationOptions(Name,Value) creates a simulation options set with the specified
“Properties” on page 3-148 using one or more name-value pair arguments.

Properties
MaxSteps — Number of steps to run the simulation
500 (default) | positive integer

Number of steps to run the simulation, specified as the comma-separated pair consisting of
'MaxSteps' and a positive integer. In general, you define episode termination conditions in the
environment. This value is the maximum number of steps to run in the simulation if those termination
conditions are not met.
Example: 'MaxSteps',1000

NumSimulations — Number of simulations
1 (default) | positive integer

Number of simulations to run, specified as the comma-separated pair consisting of
'NumSimulations' and a positive integer. At the start of each simulation, sim resets the
environment. You specify what happens on environment reset when you create the environment. For
instance, resetting the environment at the start of each episode can include randomizing initial state
values, if you configure your environment to do so. In that case, running multiple simulations allows
you to validate performance of a trained agent over a range of initial conditions.
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Example: 'NumSimulations',10

StopOnError — Stop simulation when error occurs
"on" (default) | "off"

Stop simulation when an error occurs, specified as "off" or "on". When this option is "off", errors
are captured and returned in the SimulationInfo output of sim, and simulation continues.

UseParallel — Flag for using parallel simulation
false (default) | true

Flag for using parallel simulation, specified as a logical. Setting this option to true configures the
simulation to use parallel processing to simulate the environment, thereby enabling usage of multiple
cores, processors, computer clusters or cloud resources to speed up simulation. To specify options for
parallel simulation, use the ParallelizationOptions property.

Note that if you want to speed up deep neural network calculations (such as gradient computation,
parameter update and prediction) using a local GPU you do not need to set UseParallel to true.
Instead, when creating your actor or critic representation, use an rlRepresentationOptions
object in which the UseDevice option is set to "gpu".

Using parallel computing or the GPU requires Parallel Computing Toolbox software. Using computer
clusters or cloud resources additionally requires MATLAB Parallel Server™.

For more information about training using multicore processors and GPUs, see “Train Agents Using
Parallel Computing and GPUs”.
Example: 'UseParallel',true

ParallelizationOptions — Options to control parallel simulation
ParallelTraining object

Parallelization options to control parallel simulation, specified as a ParallelTraining object. For
more information about training using parallel computing, see “Train Reinforcement Learning
Agents”.

The ParallelTraining object has the following properties, which you can modify using dot
notation after creating the rlTrainingOptions object.

WorkerRandomSeeds — Randomizer initialization for workers
–1 (default) | –2 | vector

Randomizer initialization for workers, specified as one the following:

• –1 — Assign a unique random seed to each worker. The value of the seed is the worker ID.
• –2 — Do not assign a random seed to the workers.
• Vector — Manually specify the random seed for each work. The number of elements in the vector

must match the number of workers.

TransferBaseWorkspaceVariables — Send model and workspace variables to parallel
workers
"on" (default) | "off"
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Send model and workspace variables to parallel workers, specified as "on" or "off". When the
option is "on", the host sends variables used in models and defined in the base MATLAB workspace
to the workers.

AttachedFiles — Additional files to attach to the parallel pool
[] (default) | string | string array

Additional files to attach to the parallel pool, specified as a string or string array.

SetupFcn — Function to run before simulation starts
[] (default) | function handle

Function to run before simulation starts, specified as a handle to a function having no input
arguments. This function is run once per worker before simulation begins. Write this function to
perform any processing that you need prior to simulation.

CleanupFcn — Function to run after simulation ends
[] (default) | function handle

Function to run after simulation ends, specified as a handle to a function having no input arguments.
You can write this function to clean up the workspace or perform other processing after simulation
terminates.

Object Functions
sim Simulate trained reinforcement learning agents within specified environment

Examples

Configure Options for Simulation

Create an options set for simulating a reinforcement learning environment. Set the number of steps
to simulate to 1000, and configure the options to run three simulations.

You can set the options using Name,Value pairs when you create the options set. Any options that you
do not explicitly set have their default values.

simOpts = rlSimulationOptions(...
    'MaxSteps',1000,...
    'NumSimulations',3)

simOpts = 
  rlSimulationOptions with properties:

                  MaxSteps: 1000
            NumSimulations: 3
               StopOnError: "on"
               UseParallel: 0
    ParallelizationOptions: [1x1 rl.option.ParallelSimulation]

Alternatively, create a default options set and use dot notation to change some of the values.

simOpts = rlSimulationOptions;
simOpts.MaxSteps = 1000;
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simOpts.NumSimulations = 3;

simOpts

simOpts = 
  rlSimulationOptions with properties:

                  MaxSteps: 1000
            NumSimulations: 3
               StopOnError: "on"
               UseParallel: 0
    ParallelizationOptions: [1x1 rl.option.ParallelSimulation]

See Also
Topics
“Reinforcement Learning Agents”

Introduced in R2019a
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rlStochasticActorRepresentation
Stochastic actor representation for reinforcement learning agents

Description
This object implements a function approximator to be used as a stochastic actor within a
reinforcement learning agent. A stochastic actor takes the observations as inputs and returns a
random action, thereby implementing a stochastic policy with a specific probability distribution. After
you create an rlStochasticActorRepresentation object, use it to create a suitable agent, such
as an rlACAgent or rlPGAgent agent. For more information on creating representations, see
“Create Policy and Value Function Representations”.

Creation

Syntax
discActor = rlStochasticActorRepresentation(net,observationInfo,
discActionInfo,'Observation',obsName)
discActor = rlStochasticActorRepresentation({basisFcn,W0},observationInfo,
actionInfo)
discActor = rlStochasticActorRepresentation( ___ ,options)

contActor = rlStochasticActorRepresentation(net,observationInfo,
contActionInfo,'Observation',obsName)
contActor = rlStochasticActorRepresentation( ___ ,options)

Description
Discrete Action Space Stochastic Actor

discActor = rlStochasticActorRepresentation(net,observationInfo,
discActionInfo,'Observation',obsName) creates a stochastic actor with a discrete action
space, using the deep neural network net as function approximator. Here, the output layer of net
must have as many elements as the number of possible discrete actions. This syntax sets the
ObservationInfo and ActionInfo properties of discActor to the inputs observationInfo and
discActionInfo, respectively. obsName must contain the names of the input layers of net.

discActor = rlStochasticActorRepresentation({basisFcn,W0},observationInfo,
actionInfo) creates a discrete space stochastic actor using a custom basis function as underlying
approximator. The first input argument is a two-elements cell in which the first element contains the
handle basisFcn to a custom basis function, and the second element contains the initial weight
matrix W0. This syntax sets the ObservationInfo and ActionInfo properties of discActor to the inputs
observationInfo and actionInfo, respectively.

discActor = rlStochasticActorRepresentation( ___ ,options) creates the discrete action
space, stochastic actor discActor using the additional options set options, which is an
rlRepresentationOptions object. This syntax sets the Options property of discActor to the
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options input argument. You can use this syntax with any of the previous input-argument
combinations.

Continuous Action Space Gaussian Actor

contActor = rlStochasticActorRepresentation(net,observationInfo,
contActionInfo,'Observation',obsName) creates a Gaussian stochastic actor with a
continuous action space using the deep neural network net as function approximator. Here, the
output layer of net must have twice as many elements as the number of dimensions of the continuous
action space. This syntax sets the ObservationInfo and ActionInfo properties of contActor to the
inputs observationInfo and contActionInfo respectively. obsName must contain the names of
the input layers of net.

Note contActor does not enforce constraints set by the action specification, therefore, when using
this actor, you must enforce action space constraints within the environment.

contActor = rlStochasticActorRepresentation( ___ ,options) creates the continuous
action space, Gaussian actor contActor using the additional options option set, which is an
rlRepresentationOptions object. This syntax sets the Options property of contActor to the
options input argument. You can use this syntax with any of the previous input-argument
combinations.

Input Arguments

net — Deep neural network
array of Layer objects | layerGraph object | DAGNetwork object | SeriesNetwork object |
dlNetwork object

Deep neural network used as the underlying approximator within the actor, specified as one of the
following:

• Array of Layer objects
• layerGraph object
• DAGNetwork object
• SeriesNetwork object
• dlnetwork object

For a discrete action space stochastic actor, net must have the observations as input and a single
output layer having as many elements as the number of possible discrete actions. Each element
represents the probability (which must be nonnegative) of executing the corresponding action.

For a continuous action space stochastic actor, net must have the observations as input and a single
output layer having twice as many elements as the number of dimensions of the continuous action
space. The elements of the output vector represent all the mean values followed by all the standard
deviations (which must be nonnegative) of the Gaussian distributions for the dimensions of the action
space.

Note The fact that standard deviations must be nonnegative while mean values must fall within the
output range means that the network must have two separate paths. The first path must produce an
estimation for the mean values, so any output nonlinearity must be scaled so that its output falls in
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the desired range. The second path must produce an estimation for the standard deviations, so you
must use a softplus or ReLU layer to enforce nonnegativity.

The network input layers must be in the same order and with the same data type and dimensions as
the signals defined in ObservationInfo. Also, the names of these input layers must match the
observation names specified in obsName. The network output layer must have the same data type and
dimension as the signal defined in ActionInfo.

rlStochasticActorRepresentation objects support recurrent deep neural networks.

For a list of deep neural network layers, see “List of Deep Learning Layers”. For more information on
creating deep neural networks for reinforcement learning, see “Create Policy and Value Function
Representations”.

obsName — Observation names
string | character vector | cell array of character vectors

Observation names, specified as a cell array of strings or character vectors. The observation names
must be the names of the input layers in net.
Example: {'my_obs'}

basisFcn — Custom basis function
function handle

Custom basis function, specified as a function handle to a user-defined MATLAB function. The user
defined function can either be an anonymous function or a function on the MATLAB path. The output
of the actor is the vector a = softmax(W'*B), where W is a weight matrix and B is the column
vector returned by the custom basis function. Each element of a represents the probability of taking
the corresponding action. The learnable parameters of the actor are the elements of W.

When creating a stochastic actor representation, your basis function must have the following
signature.

B = myBasisFunction(obs1,obs2,...,obsN)

Here obs1 to obsN are observations in the same order and with the same data type and dimensions
as the signals defined in observationInfo
Example: @(obs1,obs2,obs3) [obs3(2)*obs1(1)^2; abs(obs2(5)+obs3(1))]

W0 — Initial value of the basis function weights
column vector

Initial value of the basis function weights, W, specified as a matrix. It must have as many rows as the
length of the basis function output, and as many columns as the number of possible actions.

Properties
Options — Representation options
rlRepresentationOptions object

Representation options, specified as an rlRepresentationOptions object. Available options
include the optimizer used for training and the learning rate.
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Note TRPO agents use only the Options.UseDevice representation options and ignore the other
training and learning rate options.

ObservationInfo — Observation specifications
rlFiniteSetSpec object | rlNumericSpec object | array

Observation specifications, specified as specified as an rlFiniteSetSpec or rlNumericSpec object
or an array containing a mix of such objects. These objects define properties such as dimensions, data
type, and names of the observation signals.

rlStochasticActorRepresentation sets the ObservationInfo property of contActor or
discActor to the input observationInfo.

You can extract observationInfo from an existing environment or agent using
getObservationInfo. You can also construct the specifications manually using rlFiniteSetSpec
or rlNumericSpec.

ActionInfo — Action specifications
rlFiniteSetSpec object | rlNumericSpec object

Action specifications, specified as an rlFiniteSetSpec or rlNumericSpec object. These objects
define properties such as the dimensions, data type and name of the action signals.

For a discrete action space actor, rlStochasticActorRepresentation sets ActionInfo to the
input discActionInfo, which must be an rlFiniteSetSpec object.

For a continuous action space actor, rlStochasticActorRepresentation sets ActionInfo to the
input contActionInfo, which must be an rlNumericSpec object.

You can extract ActionInfo from an existing environment or agent using getActionInfo. You can
also construct the specification manually.

For custom basis function representations, the action signal must be a scalar, a column vector, or a
discrete action.

Object Functions
rlACAgent Actor-critic reinforcement learning agent
rlPGAgent Policy gradient reinforcement learning agent
rlPPOAgent Proximal policy optimization reinforcement learning agent
rlSACAgent Soft actor-critic reinforcement learning agent
getAction Obtain action from agent or actor representation given environment observations

Examples

Create Discrete Stochastic Actor from Deep Neural Network

Create an observation specification object (or alternatively use getObservationInfo to extract the
specification object from an environment). For this example, define the observation space as a
continuous four-dimensional space, so that a single observation is a column vector containing four
doubles.

obsInfo = rlNumericSpec([4 1]);
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Create an action specification object (or alternatively use getActionInfo to extract the
specification object from an environment). For this example, define the action space as consisting of
three values, -10, 0, and 10.

actInfo = rlFiniteSetSpec([-10 0 10]);

Create a deep neural network approximator for the actor. The input of the network (here called
state) must accept a four-element vector (the observation vector just defined by obsInfo), and its
output (here called actionProb) must be a three-element vector. Each element of the output vector
must be between 0 and 1 since it represents the probability of executing each of the three possible
actions (as defined by actInfo). Using softmax as the output layer enforces this requirement.

net = [  featureInputLayer(4,'Normalization','none','Name','state')
         fullyConnectedLayer(3,'Name','fc')
         softmaxLayer('Name','actionProb')  ];

Create the actor with rlStochasticActorRepresentation, using the network, the observations
and action specification objects, as well as the names of the network input layer.

actor = rlStochasticActorRepresentation(net,obsInfo,actInfo,'Observation','state')

actor = 
  rlStochasticActorRepresentation with properties:

         ActionInfo: [1x1 rl.util.rlFiniteSetSpec]
    ObservationInfo: [1x1 rl.util.rlNumericSpec]
            Options: [1x1 rl.option.rlRepresentationOptions]

To validate your actor, use getAction to return a random action from the observation vector [1 1 1
1], using the current network weights.

act = getAction(actor,{[1 1 1 1]}); 
act{1}

ans = 10

You can now use the actor to create a suitable agent, such as an rlACAgent, or rlPGAgent agent.

Create Continuous Stochastic Actor from Deep Neural Network

Create an observation specification object (or alternatively use getObservationInfo to extract the
specification object from an environment). For this example, define the observation space as a
continuous six-dimensional space, so that a single observation is a column vector containing 6
doubles.

obsInfo = rlNumericSpec([6 1]);

Create an action specification object (or alternatively use getActionInfo to extract the
specification object from an environment). For this example, define the action space as a continuous
two-dimensional space, so that a single action is a column vector containing 2 doubles both between
-10 and 10.

actInfo = rlNumericSpec([2 1],'LowerLimit',-10,'UpperLimit',10);
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Create a deep neural network approximator for the actor. The observation input (here called myobs)
must accept a six-dimensional vector (the observation vector just defined by obsInfo). The output
(here called myact) must be a four-dimensional vector (twice the number of dimensions defined by
actInfo). The elements of the output vector represent, in sequence, all the means and all the
standard deviations of every action.

The fact that standard deviations must be non-negative while mean values must fall within the output
range means that the network must have two separate paths. The first path is for the mean values,
and any output nonlinearity must be scaled so that it can produce values in the output range. The
second path is for the standard deviations, and you can use a softplus or relu layer to enforce non-
negativity.

% input path layers (6 by 1 input and a 2 by 1 output)
inPath = [ imageInputLayer([6 1 1], 'Normalization','none','Name','myobs') 
           fullyConnectedLayer(2,'Name','infc') ]; % 2 by 1 output

% path layers for mean value (2 by 1 input and 2 by 1 output)
% using scalingLayer to scale the range
meanPath = [ tanhLayer('Name','tanh'); % output range: (-1,1)
             scalingLayer('Name','scale','Scale',actInfo.UpperLimit) ]; % output range: (-10,10)

% path layers for standard deviations (2 by 1 input and output)
% using softplus layer to make it non negative
sdevPath =  softplusLayer('Name', 'splus');

% conctatenate two inputs (along dimension #3) to form a single (4 by 1) output layer
outLayer = concatenationLayer(3,2,'Name','mean&sdev');

% add layers to network object
net = layerGraph(inPath);
net = addLayers(net,meanPath);
net = addLayers(net,sdevPath);
net = addLayers(net,outLayer);

% connect layers: the mean value path output MUST be connected to the FIRST input of the concatenationLayer
net = connectLayers(net,'infc','tanh/in');              % connect output of inPath to meanPath input
net = connectLayers(net,'infc','splus/in');             % connect output of inPath to sdevPath input
net = connectLayers(net,'scale','mean&sdev/in1');       % connect output of meanPath to gaussPars input #1
net = connectLayers(net,'splus','mean&sdev/in2');       % connect output of sdevPath to gaussPars input #2

% plot network
plot(net)
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Set some training options for the actor.

actorOpts = rlRepresentationOptions('LearnRate',8e-3,'GradientThreshold',1);

Create the actor with rlStochasticActorRepresentation, using the network, the observations
and action specification objects, the names of the network input layer and the options object.

actor = rlStochasticActorRepresentation(net, obsInfo, actInfo, 'Observation','myobs',actorOpts)

actor = 
  rlStochasticActorRepresentation with properties:

         ActionInfo: [1x1 rl.util.rlNumericSpec]
    ObservationInfo: [1x1 rl.util.rlNumericSpec]
            Options: [1x1 rl.option.rlRepresentationOptions]

To check your actor, use getAction to return a random action from the observation vector
ones(6,1), using the current network weights.

act = getAction(actor,{ones(6,1)}); 
act{1}

ans = 2x1 single column vector

   -0.0763
    9.6860
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You can now use the actor to create a suitable agent (such as an rlACAgent, rlPGAgent, or
rlPPOAgent agent).

Create Stochastic Actor from Custom Basis Function

Create an observation specification object (or alternatively use getObservationInfo to extract the
specification object from an environment). For this example, define the observation space as a
continuous four-dimensional space, so that a single observation is a column vector containing 2
doubles.

obsInfo = rlNumericSpec([2 1]);

The stochastic actor based on a custom basis function does not support continuous action spaces.
Therefore, create a discrete action space specification object (or alternatively use getActionInfo to
extract the specification object from an environment with a discrete action space). For this example,
define the action space as a finite set consisting of 3 possible values (named 7, 5, and 3 in this case).

actInfo = rlFiniteSetSpec([7 5 3]);

Create a custom basis function. Each element is a function of the observations defined by obsInfo.

myBasisFcn = @(myobs) [myobs(2)^2; myobs(1); exp(myobs(2)); abs(myobs(1))]

myBasisFcn = function_handle with value:
    @(myobs)[myobs(2)^2;myobs(1);exp(myobs(2));abs(myobs(1))]

The output of the actor is the action, among the ones defined in actInfo, corresponding to the
element of softmax(W'*myBasisFcn(myobs)) which has the highest value. W is a weight matrix,
containing the learnable parameters, which must have as many rows as the length of the basis
function output, and as many columns as the number of possible actions.

Define an initial parameter matrix.

W0 = rand(4,3);

Create the actor. The first argument is a two-element cell containing both the handle to the custom
function and the initial parameter matrix. The second and third arguments are, respectively, the
observation and action specification objects.

actor = rlStochasticActorRepresentation({myBasisFcn,W0},obsInfo,actInfo)

actor = 
  rlStochasticActorRepresentation with properties:

         ActionInfo: [1x1 rl.util.rlFiniteSetSpec]
    ObservationInfo: [1x1 rl.util.rlNumericSpec]
            Options: [1x1 rl.option.rlRepresentationOptions]

To check your actor use the getAction function to return one of the three possible actions,
depending on a given random observation and on the current parameter matrix.

v = getAction(actor,{rand(2,1)})
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v = 1x1 cell array
    {[3]}

You can now use the actor (along with an critic) to create a suitable discrete action space agent.

Create Stochastic Actor with Recurrent Neural Network

For this example, you create a stochastic actor with a discrete action space using a recurrent neural
network. You can also use a recurrent neural network for a continuous stochastic actor using the
same method.

Create an environment and obtain observation and action information.

env = rlPredefinedEnv('CartPole-Discrete');
obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);
numObs = obsInfo.Dimension(1);
numDiscreteAct = numel(actInfo.Elements);

Create a recurrent deep neural network for the actor. To create a recurrent neural network, use a
sequenceInputLayer as the input layer and include at least one lstmLayer.

actorNetwork = [
    sequenceInputLayer(numObs,'Normalization','none','Name','state')
    fullyConnectedLayer(8,'Name','fc')
    reluLayer('Name','relu')
    lstmLayer(8,'OutputMode','sequence','Name','lstm')
    fullyConnectedLayer(numDiscreteAct,'Name','output')
    softmaxLayer('Name','actionProb')];

Create a stochastic actor representation for the network.

actorOptions = rlRepresentationOptions('LearnRate',1e-3,'GradientThreshold',1);
actor = rlStochasticActorRepresentation(actorNetwork,obsInfo,actInfo,...
    'Observation','state', actorOptions);

See Also
Functions
rlRepresentationOptions | getActionInfo | getObservationInfo

Topics
“Create Policy and Value Function Representations”
“Reinforcement Learning Agents”

Introduced in R2020a
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rlTable
Value table or Q table

Description
Value tables and Q tables are one way to represent critic networks for reinforcement learning. Value
tables store rewards for a finite set of observations. Q tables store rewards for corresponding finite
observation-action pairs.

To create a value function representation using an rlTable object, use an
rlValueRepresentation or rlQValueRepresentation object.

Creation

Syntax
T = rlTable(obsinfo)
T = rlTable(obsinfo,actinfo)

Description

T = rlTable(obsinfo) creates a value table for the given discrete observations.

T = rlTable(obsinfo,actinfo) creates a Q table for the given discrete observations and
actions.

Input Arguments

obsinfo — Observation specification
rlFiniteSetSpec object

Observation specification, specified as an rlFiniteSetSpec object.

actinfo — Action specification
rlFiniteSetSpec object

Action specification, specified as an rlFiniteSetSpec object.

Properties
Table — Reward table
array

Reward table, returned as an array. When Table is a:

• Value table, it contains NO rows, where NO is the number of finite observation values.
• Q table, it contains NO rows and NA columns, where NA is the number of possible finite actions.
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Object Functions
rlValueRepresentation Value function critic representation for reinforcement learning agents
rlQValueRepresentation Q-Value function critic representation for reinforcement learning agents

Examples

Create a Value Table

This example shows how to use rlTable to create a value table. You can use such a table to
represent the critic of an actor-critic agent with a finite observation space.

Create an environment interface, and obtain its observation specifications.

env = rlPredefinedEnv("BasicGridWorld");
obsInfo = getObservationInfo(env)

obsInfo = 
  rlFiniteSetSpec with properties:

       Elements: [25x1 double]
           Name: "MDP Observations"
    Description: [0x0 string]
      Dimension: [1 1]
       DataType: "double"

Create the value table using the observation specification.

vTable = rlTable(obsInfo)

vTable = 
  rlTable with properties:

    Table: [25x1 double]

Create a Q Table

This example shows how to use rlTable to create a Q table. Such a table could be used to represent
the actor or critic of an agent with finite observation and action spaces.

Create an environment interface, and obtain its observation and action specifications.

env=rlMDPEnv(createMDP(8,["up";"down"]));
obsInfo = getObservationInfo(env)

obsInfo = 
  rlFiniteSetSpec with properties:

       Elements: [8x1 double]
           Name: "MDP Observations"
    Description: [0x0 string]
      Dimension: [1 1]
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       DataType: "double"

actInfo = getActionInfo(env)

actInfo = 
  rlFiniteSetSpec with properties:

       Elements: [2x1 double]
           Name: "MDP Actions"
    Description: [0x0 string]
      Dimension: [1 1]
       DataType: "double"

Create the Q table using the observation and action specifications.

qTable = rlTable(obsInfo,actInfo)

qTable = 
  rlTable with properties:

    Table: [8x2 double]

See Also
Topics
“Create Policy and Value Function Representations”

Introduced in R2019a
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rlTD3Agent
Twin-delayed deep deterministic policy gradient reinforcement learning agent

Description
The twin-delayed deep deterministic policy gradient (DDPG) algorithm is an actor-critic, model-free,
online, off-policy reinforcement learning method which computes an optimal policy that maximizes
the long-term reward. The action space can only be continuous.

Use rlTD3Agent to create one of the following types of agents.

• Twin-delayed deep deterministic policy gradient (TD3) agent with two Q-value functions. This
agent prevents overestimation of the value function by learning two Q value functions and using
the minimum values for policy updates.

• Delayed deep deterministic policy gradient (delayed DDPG) agent with a single Q value function.
This agent is a DDPG agent with target policy smoothing and delayed policy and target updates.

For more information, see “Twin-Delayed Deep Deterministic Policy Gradient Agents”. For more
information on the different types of reinforcement learning agents, see “Reinforcement Learning
Agents”.

Creation

Syntax
agent = rlTD3Agent(observationInfo,actionInfo)
agent = rlTD3Agent(observationInfo,actionInfo,initOpts)

agent = rlTD3Agent(actor,critics,agentOptions)

agent = rlTD3Agent( ___ ,agentOptions)

Description

Create Agent from Observation and Action Specifications

agent = rlTD3Agent(observationInfo,actionInfo) creates a TD3 agent for an environment
with the given observation and action specifications, using default initialization options. The actor
and critic representations in the agent use default deep neural networks built from the observation
specification observationInfo and the action specification actionInfo.

agent = rlTD3Agent(observationInfo,actionInfo,initOpts) creates a deep deterministic
policy gradient agent for an environment with the given observation and action specifications. The
agent uses default networks configured using options specified in the initOpts object. For more
information on the initialization options, see rlAgentInitializationOptions.
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Create Agent from Actor and Critic Representations

agent = rlTD3Agent(actor,critics,agentOptions) creates an agent with the specified actor
and critic representations. To create a:

• TD3 agent, specify a two-element row vector of critic representations.
• Delayed DDPG agent, specify a single critic representation.

Specify Agent Options

agent = rlTD3Agent( ___ ,agentOptions) creates a TD3 agent and sets the AgentOptions
property to the agentOptions input argument. Use this syntax after any of the input arguments in
the previous syntaxes.

Input Arguments

observationInfo — Observation specifications
specification object | array of specification objects

Observation specifications, specified as a reinforcement learning specification object or an array of
specification objects defining properties such as dimensions, data type, and names of the observation
signals.

You can extract observationInfo from an existing environment or agent using
getObservationInfo. You can also construct the specifications manually using rlFiniteSetSpec
or rlNumericSpec.

actionInfo — Action specification
specification object

Action specifications, specified as a reinforcement learning specification object defining properties
such as dimensions, data type, and names of the action signals.

Since a DDPG agent operates in a continuous action space, you must specify actionInfo as an
rlNumericSpec object.

You can extract actionInfo from an existing environment or agent using getActionInfo. You can
also construct the specification manually using rlNumericSpec.

initOpts — Agent initialization options
rlAgentInitializationOptions object

Agent initialization options, specified as an rlAgentInitializationOptions object.

actor — Actor network representation
rlDeterministicActorRepresentation object

Actor network representation, specified as an rlDeterministicActorRepresentation object.
For more information on creating actor representations, see “Create Policy and Value Function
Representations”.

critics — Critic network representations
rlQValueRepresentation object | two-element row vector of rlQValueRepresentation objects

Critic network representations, specified as one of the following:
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• rlQValueRepresentation object — Create a delayed DDPG agent with a single Q value
function. This agent is a DDPG agent with target policy smoothing and delayed policy and target
updates.

• Two-element row vector of rlQValueRepresentation objects — Create a TD3 agent with two
critic value functions. The two critic networks must be unique rlQValueRepresentation
objects with the same observation and action specifications. The representations can either have
different structures or the same structure but with different initial parameters.

For more information on creating critic representations, see “Create Policy and Value Function
Representations”.

Properties
AgentOptions — Agent options
rlTD3AgentOptions object

Agent options, specified as an rlTD3AgentOptions object.

If you create a TD3 agent with default actor and critic representations that use recurrent neural
networks, the default value of AgentOptions.SequenceLength is 32.

ExperienceBuffer — Experience buffer
ExperienceBuffer object

Experience buffer, specified as an ExperienceBuffer object. During training the agent stores each
of its experiences (S,A,R,S') in a buffer. Here:

• S is the current observation of the environment.
• A is the action taken by the agent.
• R is the reward for taking action A.
• S' is the next observation after taking action A.

For more information on how the agent samples experience from the buffer during training, see
“Twin-Delayed Deep Deterministic Policy Gradient Agents”.

Object Functions
train Train reinforcement learning agents within a specified environment
sim Simulate trained reinforcement learning agents within specified

environment
getAction Obtain action from agent or actor representation given environment

observations
getActor Get actor representation from reinforcement learning agent
setActor Set actor representation of reinforcement learning agent
getCritic Get critic representation from reinforcement learning agent
setCritic Set critic representation of reinforcement learning agent
generatePolicyFunction Create function that evaluates trained policy of reinforcement learning

agent

Examples
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Create TD3 Agent from Observation and Action Specifications

Create an environment with a continuous action space, and obtain its observation and action
specifications. For this example, load the environment used in the example “Train DDPG Agent to
Control Double Integrator System”. The observation from the environment is a vector containing the
position and velocity of a mass. The action is a scalar representing a force, applied to the mass,
ranging continuously from -2 to 2 Newton.

% load predefined environment
env = rlPredefinedEnv("DoubleIntegrator-Continuous");

% obtain observation and action specifications
obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

The agent creation function initializes the actor and critic networks randomly. You can ensure
reproducibility by fixing the seed of the random generator. To do so, uncomment the following line.

% rng(0)

Create a TD3 agent from the environment observation and action specifications.

agent = rlTD3Agent(obsInfo,actInfo);

To check your agent, use getAction to return the action from a random observation.

getAction(agent,{rand(obsInfo(1).Dimension)})

ans = 1x1 cell array
    {[0.0087]}

You can now test and train the agent within the environment.

Create TD3 Agent Using Initialization Options

Create an environment with a continuous action space and obtain its observation and action
specifications. For this example, load the environment used in the example “Train DDPG Agent to
Swing Up and Balance Pendulum with Image Observation”. This environment has two observations: a
50-by-50 grayscale image and a scalar (the angular velocity of the pendulum). The action is a scalar
representing a torque ranging continuously from -2 to 2 Nm.

% load predefined environment
env = rlPredefinedEnv("SimplePendulumWithImage-Continuous");

% obtain observation and action specifications
obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

Create an agent initialization option object, specifying that each hidden fully connected layer in the
network must have 128 neurons (instead of the default number, 256).

initOpts = rlAgentInitializationOptions('NumHiddenUnit',128);
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The agent creation function initializes the actor and critic networks randomly. You can ensure
reproducibility by fixing the seed of the random generator. To do so, uncomment the following line.

% rng(0)

Create a DDPG agent from the environment observation and action specifications.

agent = rlTD3Agent(obsInfo,actInfo,initOpts);

Reduce the learning rate of the critics to 1e-3 and 2e-3.

critic = getCritic(agent);
critic(1).Options.LearnRate = 1e-3;
critic(2).Options.LearnRate = 2e-3;
agent  = setCritic(agent,critic);

Extract the deep neural networks from the actor.

actorNet = getModel(getActor(agent));

Extract the deep neural networks from the two critics. Note that getModel(critics) only returns
the first critic network.

critics = getCritic(agent);
criticNet1 = getModel(critics(1));
criticNet2 = getModel(critics(2));

Display the layers of the first critic network, and verify that each hidden fully connected layer has 128
neurons.

criticNet1.Layers

ans = 
  13x1 Layer array with layers:

     1   'input_1'        Image Input       50x50x1 images
     2   'conv_1'         Convolution       64 3x3x1 convolutions with stride [1  1] and padding [0  0  0  0]
     3   'relu_input_1'   ReLU              ReLU
     4   'fc_1'           Fully Connected   128 fully connected layer
     5   'input_2'        Feature Input     1 features
     6   'fc_2'           Fully Connected   128 fully connected layer
     7   'input_3'        Feature Input     1 features
     8   'fc_3'           Fully Connected   128 fully connected layer
     9   'concat'         Concatenation     Concatenation of 3 inputs along dimension 1
    10   'relu_body'      ReLU              ReLU
    11   'fc_body'        Fully Connected   128 fully connected layer
    12   'body_output'    ReLU              ReLU
    13   'output'         Fully Connected   1 fully connected layer

Plot the networks of the actor and of the second critic.

plot(layerGraph(actorNet))
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plot(layerGraph(criticNet2))
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To check your agent, use getAction to return the action from a random observation.

getAction(agent,{rand(obsInfo(1).Dimension),rand(obsInfo(2).Dimension)})

ans = 1x1 cell array
    {[0.0675]}

You can now test and train the agent within the environment.

Create TD3 Agent from Actor and Critic

Create an environment with a continuous action space and obtain its observation and action
specifications. For this example, load the environment used in the example “Train DDPG Agent to
Control Double Integrator System”. The observation from the environment is a vector containing the
position and velocity of a mass. The action is a scalar representing a force ranging continuously from
-2 to 2 Newton.

env = rlPredefinedEnv("DoubleIntegrator-Continuous");
obsInfo = getObservationInfo(env);
numObs = obsInfo.Dimension(1);
actInfo = getActionInfo(env);
numAct = numel(actInfo);

Create two Q-value critic representations. First, create a critic deep neural network structure.
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statePath1 = [
    featureInputLayer(numObs,'Normalization','none','Name','observation')
    fullyConnectedLayer(400,'Name','CriticStateFC1')
    reluLayer('Name','CriticStateRelu1')
    fullyConnectedLayer(300,'Name','CriticStateFC2')
    ];
actionPath1 = [
    featureInputLayer(numAct,'Normalization','none','Name','action')
    fullyConnectedLayer(300,'Name','CriticActionFC1')
    ];
commonPath1 = [
    additionLayer(2,'Name','add')
    reluLayer('Name','CriticCommonRelu1')
    fullyConnectedLayer(1,'Name','CriticOutput')
    ];

criticNet = layerGraph(statePath1);
criticNet = addLayers(criticNet,actionPath1);
criticNet = addLayers(criticNet,commonPath1);
criticNet = connectLayers(criticNet,'CriticStateFC2','add/in1');
criticNet = connectLayers(criticNet,'CriticActionFC1','add/in2');

Create the critic representations. Use the same network structure for both critics. The TD3 agent
initializes the two networks using different default parameters.

criticOptions = rlRepresentationOptions('Optimizer','adam','LearnRate',1e-3,... 
                                        'GradientThreshold',1,'L2RegularizationFactor',2e-4);
critic1 = rlQValueRepresentation(criticNet,obsInfo,actInfo,...
    'Observation',{'observation'},'Action',{'action'},criticOptions);
critic2 = rlQValueRepresentation(criticNet,obsInfo,actInfo,...
    'Observation',{'observation'},'Action',{'action'},criticOptions);

Create a deep neural network for the actor.

actorNet = [
    featureInputLayer(numObs,'Normalization','none','Name','observation')
    fullyConnectedLayer(400,'Name','ActorFC1')
    reluLayer('Name','ActorRelu1')
    fullyConnectedLayer(300,'Name','ActorFC2')
    reluLayer('Name','ActorRelu2')
    fullyConnectedLayer(numAct,'Name','ActorFC3')                       
    tanhLayer('Name','ActorTanh1')
    ];

Create a deterministic actor representation.

actorOptions = rlRepresentationOptions('Optimizer','adam','LearnRate',1e-3,...
                                       'GradientThreshold',1,'L2RegularizationFactor',1e-5);
actor  = rlDeterministicActorRepresentation(actorNet,obsInfo,actInfo,...
    'Observation',{'observation'},'Action',{'ActorTanh1'},actorOptions);

Specify agent options.

agentOptions = rlTD3AgentOptions;
agentOptions.DiscountFactor = 0.99;
agentOptions.TargetSmoothFactor = 5e-3;
agentOptions.TargetPolicySmoothModel.Variance = 0.2;
agentOptions.TargetPolicySmoothModel.LowerLimit = -0.5;
agentOptions.TargetPolicySmoothModel.UpperLimit = 0.5;
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Create TD3 agent using actor, critics, and options.

agent = rlTD3Agent(actor,[critic1 critic2],agentOptions);

You can also create an rlTD3Agent object with a single critic. In this case, the object represents a
DDPG agent with target policy smoothing and delayed policy and target updates.

delayedDDPGAgent = rlTD3Agent(actor,critic1,agentOptions);

To check your agents, use getAction to return the action from a random observation.

getAction(agent,{rand(2,1)})

ans = 1x1 cell array
    {[0.0304]}

getAction(delayedDDPGAgent,{rand(2,1)})

ans = 1x1 cell array
    {[-0.0142]}

You can now test and train either agents within the environment.

Create TD3 Agent with Recurrent Neural Networks

For this example, load the environment used in the example “Train DDPG Agent to Control Double
Integrator System”. The observation from the environment is a vector containing the position and
velocity of a mass. The action is a scalar representing a force ranging continuously from -2 to 2
Newton.

env = rlPredefinedEnv("DoubleIntegrator-Continuous");

Obtain observation and action specifications.

obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

Obtain the number of observations and the number of actions.

numObs = obsInfo.Dimension(1);
numAct = numel(actInfo);

Create two Q-value critic representations. First, create a critic deep neural network structure. To
create a recurrent neural network, use a sequenceInputLayer as the input layer and include an
lstmLayer as one of the other network layers.

statePath1 = [
    sequenceInputLayer(numObs,'Normalization','none','Name','observation')
    fullyConnectedLayer(400,'Name','CriticStateFC1')
    reluLayer('Name','CriticStateRelu1')
    fullyConnectedLayer(300,'Name','CriticStateFC2')
    ];
actionPath1 = [
    sequenceInputLayer(numAct,'Normalization','none','Name','action')
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    fullyConnectedLayer(300,'Name','CriticActionFC1')
    ];
commonPath1 = [
    additionLayer(2,'Name','add')
    reluLayer('Name','CriticCommonRelu1')
    lstmLayer(16,'OutputMode','sequence','Name','CriticLSTM');
    fullyConnectedLayer(1,'Name','CriticOutput')
    ];

criticNet = layerGraph(statePath1);
criticNet = addLayers(criticNet,actionPath1);
criticNet = addLayers(criticNet,commonPath1);
criticNet = connectLayers(criticNet,'CriticStateFC2','add/in1');
criticNet = connectLayers(criticNet,'CriticActionFC1','add/in2');

Create the critic representations. Use the same network structure for both critics. The TD3 agent
initializes the two networks using different default parameters.

criticOptions = rlRepresentationOptions('Optimizer','adam','LearnRate',1e-3,... 
                                        'GradientThreshold',1,'L2RegularizationFactor',2e-4);
critic1 = rlQValueRepresentation(criticNet,obsInfo,actInfo,...
    'Observation',{'observation'},'Action',{'action'},criticOptions);
critic2 = rlQValueRepresentation(criticNet,obsInfo,actInfo,...
    'Observation',{'observation'},'Action',{'action'},criticOptions);

Create a deep neural network for the actor. Since the critic has a recurrent network, the actor must
have a recurrent network too.

actorNet = [
    sequenceInputLayer(numObs,'Normalization','none','Name','observation')
    fullyConnectedLayer(400,'Name','ActorFC1')
    lstmLayer(8,'OutputMode','sequence','Name','ActorLSTM')
    reluLayer('Name','ActorRelu1')
    fullyConnectedLayer(300,'Name','ActorFC2')
    reluLayer('Name','ActorRelu2')
    fullyConnectedLayer(numAct,'Name','ActorFC3')                       
    tanhLayer('Name','ActorTanh1')
    ];

Create a deterministic actor representation.

actorOptions = rlRepresentationOptions('Optimizer','adam','LearnRate',1e-3,...
                                       'GradientThreshold',1,'L2RegularizationFactor',1e-5);
actor  = rlDeterministicActorRepresentation(actorNet,obsInfo,actInfo,...
    'Observation',{'observation'},'Action',{'ActorTanh1'},actorOptions);

Specify agent options. To use a TD3 agent with recurrent neural networks, you must specify a
SequenceLength greater than 1.

agentOptions = rlTD3AgentOptions;
agentOptions.DiscountFactor = 0.99;
agentOptions.SequenceLength = 32;
agentOptions.TargetSmoothFactor = 5e-3;
agentOptions.TargetPolicySmoothModel.Variance = 0.2;
agentOptions.TargetPolicySmoothModel.LowerLimit = -0.5;
agentOptions.TargetPolicySmoothModel.UpperLimit = 0.5;

Create TD3 agent using actor, critics, and options.
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agent = rlTD3Agent(actor,[critic1 critic2],agentOptions);

You can also create an rlTD3Agent object with a single critic. In this case, the object represents a
DDPG agent with target policy smoothing and delayed policy and target updates.

delayedDDPGAgent = rlTD3Agent(actor,critic1,agentOptions);

To check your agents, use getAction to return the action from a random observation.

getAction(agent,{rand(obsInfo.Dimension)})

ans = 1×1 cell array
    {[-0.0018]}

getAction(delayedDDPGAgent,{rand(obsInfo.Dimension)})

ans = 1×1 cell array
    {[-0.0014]}

You can now test and train either agents within the environment.

See Also
rlAgentInitializationOptions | rlTD3AgentOptions | rlQValueRepresentation |
rlDeterministicActorRepresentation | Deep Network Designer

Topics
“Twin-Delayed Deep Deterministic Policy Gradient Agents”
“Reinforcement Learning Agents”
“Train Reinforcement Learning Agents”
“Train Biped Robot to Walk Using Reinforcement Learning Agents”

Introduced in R2020a
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rlTD3AgentOptions
Options for TD3 agent

Description
Use an rlTD3AgentOptions object to specify options for twin-delayed deep deterministic policy
gradient (TD3) agents. To create a TD3 agent, use rlTD3Agent

For more information see “Twin-Delayed Deep Deterministic Policy Gradient Agents”.

For more information on the different types of reinforcement learning agents, see “Reinforcement
Learning Agents”.

Creation

Syntax
opt = rlTD3AgentOptions
opt = rlTD3AgentOptions(Name,Value)

Description

opt = rlTD3AgentOptions creates an options object for use as an argument when creating a TD3
agent using all default options. You can modify the object properties using dot notation.

opt = rlTD3AgentOptions(Name,Value) sets option properties on page 3-175 using name-value
pairs. For example, rlTD3AgentOptions('DiscountFactor',0.95) creates an option set with a
discount factor of 0.95. You can specify multiple name-value pairs. Enclose each property name in
quotes.

Properties
ExplorationModel — Exploration noise model options
GaussianActionNoise object (default) | OrnsteinUhlenbeckActionNoise object

Noise model options, specified as a GaussianActionNoise object or an
OrnsteinUhlenbeckActionNoise object. For more information on noise models, see “Noise
Models” on page 3-178.

For an agent with multiple actions, if the actions have different ranges and units, it is likely that each
action requires different noise model parameters. If the actions have similar ranges and units, you
can set the noise parameters for all actions to the same value.

For example, for an agent with two actions, set the standard deviation of each action to a different
value while using the same decay rate for both standard deviations.
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opt = rlTD3AgentOptions;
opt.ExplorationModel.StandardDeviation = [0.1 0.2];
opt.ExplorationModel.StandardDeviationDecayRate = 1e-4;

TargetPolicySmoothModel — Target smoothing noise model options
GaussianActionNoise object

Target smoothing noise model options, specified as a GaussianActionNoise object. This model
helps the policy exploit actions with high Q-value estimates. For more information on noise models,
see “Noise Models” on page 3-178.

For an agent with multiple actions, if the actions have different ranges and units, it is likely that each
action requires different smoothing noise model parameters. If the actions have similar ranges and
units, you can set the noise parameters for all actions to the same value.

For example, for an agent with two actions, set the standard deviation of each action to a different
value while using the same decay rate for both standard deviations.

opt = rlTD3AgentOptions;
opt.TargetPolicySmoothModel.StandardDeviation = [0.1 0.2];
opt.TargetPolicySmoothModel.StandardDeviationDecayRate = 1e-4;

PolicyUpdateFrequency — Number of steps between policy updates
2 (default) | positive integer

Number of steps between policy updates, specified as a positive integer.

TargetSmoothFactor — Smoothing factor for target actor and critic updates
0.005 (default) | positive scalar less than or equal to 1

Smoothing factor for target actor and critic updates, specified as a positive scalar less than or equal
to 1. For more information, see “Target Update Methods”.

TargetUpdateFrequency — Number of steps between target actor and critic updates
2 (default) | positive integer

Number of steps between target actor and critic updates, specified as a positive integer. For more
information, see “Target Update Methods”.

ResetExperienceBufferBeforeTraining — Option for clearing the experience buffer
true (default) | false

Option for clearing the experience buffer before training, specified as a logical value.

SaveExperienceBufferWithAgent — Option for saving the experience buffer
false (default) | true

Option for saving the experience buffer data when saving the agent, specified as a logical value. This
option applies both when saving candidate agents during training and when saving agents using the
save function.

For some agents, such as those with a large experience buffer and image-based observations, the
memory required for saving their experience buffer is large. In such cases, to not save the experience
buffer data, set SaveExperienceBufferWithAgent to false.
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If you plan to further train your saved agent, you can start training with the previous experience
buffer as a starting point. In this case, set SaveExperienceBufferWithAgent to true.

SequenceLength — Maximum batch-training trajectory length when using RNN
1 (default) | positive integer

Maximum batch-training trajectory length when using a recurrent neural network, specified as a
positive integer. This value must be greater than 1 when using a recurrent neural network and 1
otherwise.

MiniBatchSize — Size of random experience mini-batch
64 (default) | positive integer

Size of random experience mini-batch, specified as a positive integer. During each training episode,
the agent randomly samples experiences from the experience buffer when computing gradients for
updating the critic properties. Large mini-batches reduce the variance when computing gradients but
increase the computational effort.

NumStepsToLookAhead — Number of future rewards used to estimate the value of the policy
1 (default) | positive integer

Number of future rewards used to estimate the value of the policy, specified as a positive integer. For
more information, see [1], Chapter 7.

Note that if parallel training is enabled (that is if an rlTrainingOptions option object in which the
UseParallel property is set to true is passed to train) then NumStepsToLookAhead must be set
to 1, otherwise an error is generated. This guarantees that experiences are stored contiguously.

.

ExperienceBufferLength — Experience buffer size
10000 (default) | positive integer

Experience buffer size, specified as a positive integer. During training, the agent computes updates
using a mini-batch of experiences randomly sampled from the buffer.

SampleTime — Sample time of agent
1 (default) | positive scalar

Sample time of agent, specified as a positive scalar.

Within a Simulink environment, the agent gets executed every SampleTime seconds of simulation
time.

Within a MATLAB environment, the agent gets executed every time the environment advances.
However, SampleTime is the time interval between consecutive elements in the output experience
returned by sim or train.

DiscountFactor — Discount factor
0.99 (default) | positive scalar less than or equal to 1

Discount factor applied to future rewards during training, specified as a positive scalar less than or
equal to 1.
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Object Functions
rlTD3Agent Twin-delayed deep deterministic policy gradient reinforcement learning agent

Examples

Create TD3 Agent Options Object

This example shows how to create a TD3 agent option object.

Create an rlTD3AgentOptions object that specifies the mini-batch size.

opt = rlTD3AgentOptions('MiniBatchSize',48)

opt = 
  rlTD3AgentOptions with properties:

                       ExplorationModel: [1x1 rl.option.GaussianActionNoise]
                TargetPolicySmoothModel: [1x1 rl.option.GaussianActionNoise]
                  PolicyUpdateFrequency: 2
                     TargetSmoothFactor: 0.0050
                  TargetUpdateFrequency: 2
    ResetExperienceBufferBeforeTraining: 1
          SaveExperienceBufferWithAgent: 0
                         SequenceLength: 1
                          MiniBatchSize: 48
                    NumStepsToLookAhead: 1
                 ExperienceBufferLength: 10000
                             SampleTime: 1
                         DiscountFactor: 0.9900

You can modify options using dot notation. For example, set the agent sample time to 0.5.

opt.SampleTime = 0.5;

Algorithms
Noise Models
Gaussian Action Noise

A GaussianActionNoise object has the following numeric value properties.

Property Description Default Value
(ExplorationModel)

Default Value
(TargetPolicySmooth
Model)

Mean Noise model mean 0 0
StandardDeviationD
ecayRate

Decay rate of the
standard deviation

0 0

StandardDeviation Noise model standard
deviation

sqrt(0.1) sqrt(0.2)

3 Objects

3-178



Property Description Default Value
(ExplorationModel)

Default Value
(TargetPolicySmooth
Model)

StandardDeviationM
in

Minimum standard
deviation, which must
be less than
StandardDeviation

0.01 0.01

LowerLimit Noise sample lower
limit

-Inf -0.5

UpperLimit Noise sample upper
limit

Inf 0.5

At each time step k, the Gaussian noise v is sampled as shown in the following code.

w = Mean + rand(ActionSize).*StandardDeviation(k);
v(k+1) = min(max(w,LowerLimit),UpperLimit);

Where the initial value v(1) is defined by the InitialAction parameter. At each sample time step,
the standard deviation decays as shown in the following code.

decayedStandardDeviation = StandardDeviation(k).*(1 - StandardDeviationDecayRate);
StandardDeviation(k+1) = max(decayedStandardDeviation,StandardDeviationMin);

Ornstein-Uhlenbeck Action Noise

An OrnsteinUhlenbeckActionNoise object has the following numeric value properties.

Property Description Default Value
InitialAction Initial value of action for noise

model
0

Mean Noise model mean 0
MeanAttractionConstant Constant specifying how quickly

the noise model output is
attracted to the mean

0.15

StandardDeviationDecayRa
te

Decay rate of the standard
deviation

0

StandardDeviation Noise model standard deviation 0.3
StandardDeviationMin Minimum standard deviation 0

At each sample time step k, the noise value v(k) is updated using the following formula, where Ts is
the agent sample time, and the initial value v(1) is defined by the InitialAction parameter.

v(k+1) = v(k) + MeanAttractionConstant.*(Mean - v(k)).*Ts
       + StandardDeviation(k).*randn(size(Mean)).*sqrt(Ts)

At each sample time step, the standard deviation decays as shown in the following code.

decayedStandardDeviation = StandardDeviation(k).*(1 - StandardDeviationDecayRate);
StandardDeviation(k+1) = max(decayedStandardDeviation,StandardDeviationMin);

You can calculate how many samples it will take for the standard deviation to be halved using this
simple formula.
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halflife = log(0.5)/log(1-StandardDeviationDecayRate);

For continuous action signals, it is important to set the noise standard deviation appropriately to
encourage exploration. It is common to set StandardDeviation*sqrt(Ts) to a value between 1%
and 10% of your action range.

If your agent converges on local optima too quickly, promote agent exploration by increasing the
amount of noise; that is, by increasing the standard deviation. Also, to increase exploration, you can
reduce the StandardDeviationDecayRate.

Compatibility Considerations
Properties defining noise probability distribution in the GaussianActionNoise object have
changed
Behavior changed in R2021a

The properties defining the probability distribution of the Gaussian action noise model have changed.
This noise model is used by TD3 agents for exploration and target policy smoothing.

• The Variance property has been replaced by the StandardDeviation property.
• The VarianceDecayRate property has been replaced by the StandardDeviationDecayRate

property.
• The VarianceMin property has been replaced by the StandardDeviationMin property.

When a GaussianActionNoise noise object saved from a previous MATLAB release is loaded, the
value of VarianceDecayRate is copied to StandardDeviationDecayRate, while the square root
of the values of Variance and VarianceMin are copied to StandardDeviation and
StandardDeviationMin, respectively.

The Variance, VarianceDecayRate, and VarianceMin properties still work, but they are not
recommended. To define the probability distribution of the Gaussian action noise model, use the new
property names instead.

Update Code

This table shows how to update your code to use the new property names for rlTD3AgentOptions
object td3opt.

Not Recommended Recommended
td3opt.ExplorationModel.Variance = 0.5; td3opt.ExplorationModel.StandardDeviation = sqrt(0.5);
td3opt.ExplorationModel.VarianceDecayRate = 0.1;td3opt.ExplorationModel.StandardDeviationDecayRate = 0.1;
td3opt.ExplorationModel.VarianceMin = 0.1; td3opt.ExplorationModel.StandardDeviationMin = sqrt(0.1);

Property names defining noise probability distribution in the
OrnsteinUhlenbeckActionNoise object have changed
Behavior changed in R2021a

The properties defining the probability distribution of the Ornstein-Uhlenbeck (OU) noise model have
been renamed. TD3 agents use OU noise for exploration.

• The Variance property has been renamed StandardDeviation.
• The VarianceDecayRate property has been renamed StandardDeviationDecayRate.
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• The VarianceMin property has been renamed StandardDeviationMin.

The default values of these properties remain the same. When an
OrnsteinUhlenbeckActionNoise noise object saved from a previous MATLAB release is loaded,
the values of Variance, VarianceDecayRate, and VarianceMin are copied in the
StandardDeviation, StandardDeviationDecayRate, and StandardDeviationMin,
respectively.

The Variance, VarianceDecayRate, and VarianceMin properties still work, but they are not
recommended. To define the probability distribution of the OU noise model, use the new property
names instead.

Update Code

This table shows how to update your code to use the new property names for rlTD3AgentOptions
object td3opt.

Not Recommended Recommended
td3opt.ExplorationModel.Variance = 0.5; td3opt.ExplorationModel.StandardDeviation = sqrt(0.5);
td3opt.ExplorationModel.VarianceDecayRate = 0.1;td3opt.ExplorationModel.StandardDeviationDecayRate = 0.1;
td3opt.ExplorationModel.VarianceMin = 0.1; td3opt.ExplorationModel.StandardDeviationMin = sqrt(0.1);
td3opt.TargetPolicySmoothModel.Variance = 0.5;td3opt.TargetPolicySmoothModel.StandardDeviation = sqrt(0.5);
td3opt.TargetPolicySmoothModel.VarianceDecayRate = 0.1;td3opt.TargetPolicySmoothModel.StandardDeviationDecayRate = 0.1;
td3opt.TargetPolicySmoothModel.VarianceMin = 0.1;td3opt.TargetPolicySmoothModel.StandardDeviationMin = sqrt(0.1);

References
[1] Sutton, Richard S., and Andrew G. Barto. Reinforcement Learning: An Introduction. Second

edition. Adaptive Computation and Machine Learning. Cambridge, Mass: The MIT Press,
2018.

See Also
Topics
“Twin-Delayed Deep Deterministic Policy Gradient Agents”

Introduced in R2020a
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rlTrainingOptions
Options for training reinforcement learning agents

Description
Use an rlTrainingOptions object to specify training options for an agent. To train an agent, use
train.

For more information on training agents, see “Train Reinforcement Learning Agents”.

Creation
Syntax
trainOpts = rlTrainingOptions
opt = rlTrainingOptions(Name,Value)

Description

trainOpts = rlTrainingOptions returns the default options for training a reinforcement
learning agent. Use training options to specify parameters for the training session, such as the
maximum number of episodes to train, criteria for stopping training, criteria for saving agents, and
options for using parallel computing. After configuring the options, use trainOpts as an input
argument for train.

opt = rlTrainingOptions(Name,Value) creates a training option set and sets object
“Properties” on page 3-182 using one or more name-value pair arguments.

Properties
MaxEpisodes — Maximum number of episodes to train the agent
500 (default) | positive integer

Maximum number of episodes to train the agent, specified as a positive integer. Regardless of other
criteria for termination, training terminates after MaxEpisodes.
Example: 'MaxEpisodes',1000

MaxStepsPerEpisode — Maximum number of steps to run per episode
500 (default) | positive integer

Maximum number of steps to run per episode, specified as a positive integer. In general, you define
episode termination conditions in the environment. This value is the maximum number of steps to run
in the episode if other termination conditions are not met.
Example: 'MaxStepsPerEpisode',1000

ScoreAveragingWindowLength — Window length for averaging
5 (default) | positive integer scalar | positive integer vector
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Window length for averaging the scores, rewards, and number of steps for each agent, specified as a
scalar or vector.

If the training environment contains a single agent, specify ScoreAveragingWindowLength as a
scalar.

If the training environment is a multi-agent Simulink environment, specify a scalar to apply the same
window length to all agents.

To use a different window length for each agent, specify ScoreAveragingWindowLength as a
vector. In this case, the order of the elements in the vector correspond to the order of the agents used
during environment creation.

For options expressed in terms of averages, ScoreAveragingWindowLength is the number of
episodes included in the average. For instance, if StopTrainingCriteria is "AverageReward",
and StopTrainingValue is 500 for a given agent, then for that agent, training terminates when the
average reward over the number of episodes specified in ScoreAveragingWindowLength equals or
exceeds 500. For the other agents, training continues until:

• All agents reach their stop criteria.
• The number of episodes reaches MaxEpisodes.
• You stop training by clicking the Stop Training button in Episode Manager or pressing Ctrl-C at

the MATLAB command line.

Example: 'ScoreAveragingWindowLength',10

StopTrainingCriteria — Training termination condition
"AverageSteps" (default) | "AverageReward" | "EpisodeCount" | ...

Training termination condition, specified as one of the following strings:

• "AverageSteps" — Stop training when the running average number of steps per episode equals
or exceeds the critical value specified by the option StopTrainingValue. The average is
computed using the window 'ScoreAveragingWindowLength'.

• "AverageReward" — Stop training when the running average reward equals or exceeds the
critical value.

• "EpisodeReward" — Stop training when the reward in the current episode equals or exceeds the
critical value.

• "GlobalStepCount" — Stop training when the total number of steps in all episodes (the total
number of times the agent is invoked) equals or exceeds the critical value.

• "EpisodeCount" — Stop training when the number of training episodes equals or exceeds the
critical value.

Example: 'StopTrainingCriteria',"AverageReward"

StopTrainingValue — Critical value of training termination condition
500 (default) | scalar | vector

Critical value of the training termination condition, specified as a scalar or a vector.

If the training environment contains a single agent, specify StopTrainingValue as a scalar.

If the training environment is a multi-agent Simulink environment, specify a scalar to apply the same
termination criterion to all agents. To use a different termination criterion for each agent, specify
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StopTrainingValue as a vector. In this case, the order of the elements in the vector corresponds to
the order of the agents used during environment creation.

For a given agent, training ends when the termination condition specified by the
StopTrainingCriteria option equals or exceeds this value. For the other agents, the training
continues until:

• All agents reach their stop criteria.
• The number of episodes reaches maxEpisodes.
• You stop training by clicking the Stop Training button in Episode Manager or pressing Ctrl-C at

the MATLAB command line.

For instance, if StopTrainingCriteria is "AverageReward", and StopTrainingValue is 100
for a given agent, then for that agent, training terminates when the average reward over the number
of episodes specified in ScoreAveragingWindowLength equals or exceeds 100.
Example: 'StopTrainingValue',100

SaveAgentCriteria — Condition for saving agents during training
"none" (default) | "EpisodeReward" | "AverageReward" | "EpisodeCount" | ...

Condition for saving agents during training, specified as one of the following strings:

• "none" — Do not save any agents during training.
• "EpisodeReward" — Save the agent when the reward in the current episode equals or exceeds

the critical value.
• "AverageSteps" — Save the agent when the running average number of steps per episode

equals or exceeds the critical value specified by the option StopTrainingValue. The average is
computed using the window 'ScoreAveragingWindowLength'.

• "AverageReward" — Save the agent when the running average reward over all episodes equals
or exceeds the critical value.

• "GlobalStepCount" — Save the agent when the total number of steps in all episodes (the total
number of times the agent is invoked) equals or exceeds the critical value.

• "EpisodeCount" — Save the agent when the number of training episodes equals or exceeds the
critical value.

Set this option to store candidate agents that perform well according to the criteria you specify. When
you set this option to a value other than "none", the software sets the SaveAgentValue option to
500. You can change that value to specify the condition for saving the agent.

For instance, suppose you want to store for further testing any agent that yields an episode reward
that equals or exceeds 100. To do so, set SaveAgentCriteria to "EpisodeReward" and set the
SaveAgentValue option to 100. When an episode reward equals or exceeds 100, train saves the
corresponding agent in a MAT file in the folder specified by the SaveAgentDirectory option. The
MAT file is called AgentK.mat, where K is the number of the corresponding episode. The agent is
stored within that MAT file as saved_agent.
Example: 'SaveAgentCriteria',"EpisodeReward"

SaveAgentValue — Critical value of condition for saving agents
"none" (default) | 500 | scalar | vector

Critical value of the condition for saving agents, specified as a scalar or a vector.
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If the training environment contains a single agent, specify SaveAgentValue as a scalar.

If the training environment is a multi-agent Simulink environment, specify a scalar to apply the same
saving criterion to each agent. To save the agents when one meets a particular criterion, specify
SaveAgentValue as a vector. In this case, the order of the elements in the vector corresponds to the
order of the agents used when creating the environment. When a criteria for saving an agent is met,
all agents are saved in the same MAT file.

When you specify a condition for saving candidate agents using SaveAgentCriteria, the software
sets this value to 500. Change the value to specify the condition for saving the agent. See the
SaveAgentCriteria option for more details.
Example: 'SaveAgentValue',100

SaveAgentDirectory — Folder for saved agents
"savedAgents" (default) | string | character vector

Folder for saved agents, specified as a string or character vector. The folder name can contain a full
or relative path. When an episode occurs that satisfies the condition specified by the
SaveAgentCriteria and SaveAgentValue options, the software saves the agents in a MAT file in
this folder. If the folder does not exist, train creates it. When SaveAgentCriteria is "none", this
option is ignored and train does not create a folder.
Example: 'SaveAgentDirectory', pwd + "\run1\Agents"

UseParallel — Flag for using parallel training
false (default) | true

Flag for using parallel training, specified as a logical. Setting this option to true configures
training to use parallel processing to simulate the environment, thereby enabling usage of multiple
cores, processors, computer clusters or cloud resources to speed up training. To specify options for
parallel training, use the ParallelizationOptions property.

When UseParallel is true then for DQN, DDPG, TD3, and SAC the NumStepsToLookAhead
property or the corresponding agent option object must be set to 1, otherwise an error is generated.
This guarantees that experiences are stored contiguously. When AC agents are trained in parallel, a
warning is generated if the StepsUntilDataIsSent property of the ParallelizationOptions
object is set to a different value than the NumStepToLookAhead property of the AC agent option
object.

Note that if you want to speed up deep neural network calculations (such as gradient computation,
parameter update and prediction) using a local GPU, you do not need to set UseParallel to true.
Instead, when creating your actor or critic representation, use an rlRepresentationOptions
object in which the UseDevice option is set to "gpu". Using parallel computing or the GPU requires
Parallel Computing Toolbox software. Using computer clusters or cloud resources additionally
requires MATLAB Parallel Server. For more information about training using multicore processors
and GPUs, see “Train Agents Using Parallel Computing and GPUs”.
Example: 'UseParallel',true

ParallelizationOptions — Options to control parallel training
ParallelTraining object

Parallelization options to control parallel training, specified as a ParallelTraining object. For
more information about training using parallel computing, see “Train Reinforcement Learning
Agents”.

 rlTrainingOptions

3-185



The ParallelTraining object has the following properties, which you can modify using dot
notation after creating the rlTrainingOptions object.

Mode — Parallel computing mode
"sync" (default) | "async"

Parallel computing mode, specified as one of the following:

• "sync" — Use parpool to run synchronous training on the available workers. In this case,
workers pause execution until all workers are finished. The host updates the actor and critic
parameters based on the results from all the workers and sends the updated parameters to all
workers. Note that synchronous training is required for gradient-based parallelization, that is
when DataToSendFromWorkers is set to "gradients" then Mode must be set to "sync".

• "async" — Use parpool to run asynchronous training on the available workers. In this case,
workers send their data back to the host as soon as they finish and receive updated parameters
from the host. The workers then continue with their task.

DataToSendFromWorkers — Type of data that workers send to the host
"experiences" (default) | "gradients"

Type of data that workers send to the host, specified as one of the following strings:

• "experiences" — The simulation is performed by the workers, and the learning is performed by
the host. Specifically, the workers simulate the agent against the environment, and send
experience data (observation, action, reward, next observation, and a flag indicating whether a
terminal condition has been reached) to the host. For agents with gradients, the host computes
gradients from the experiences, updates the network parameters and sends back the updated
parameters to the workers to they can perform a new simulation against the environment.

• "gradients" — Both simulation and learning are performed by the workers. Specifically, the
workers simulate the agent against the environment, compute the gradients from experiences,
and send the gradients to the host. The host averages the gradients, updates the network
parameters and sends back the updated parameters to the workers to they can perform a new
simulation against the environment. This option requires synchronous training, that is it requires
Mode to be set to "sync".

Note For AC and PG agents, you must specify DataToSendFromWorkers as "gradients".

For DQN, DDPG, PPO, TD3, and SAC agents, you must specify DataToSendFromWorkers as
"experiences".

StepsUntilDataIsSent — Number of steps after which workers send data to the host
–1 (default) | positive integer

Number of steps after which workers send data to the host and receive updated parameters, specified
as –1 or a positive integer. When this option is –1, the worker waits until the end of the episode and
then sends all step data to the host. Otherwise, the worker waits the specified number of steps before
sending data.

Note

• AC agents do not accept StepsUntilDataIsSent = -1. For AC training, set
StepsUntilDataIsSent equal to the NumStepToLookAhead AC agent option.
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• For PG agents, you must specify StepsUntilDataIsSent = -1.

WorkerRandomSeeds — Randomizer initialization for workers
–1 (default) | –2 | vector

Randomizer initialization for workers, specified as one of the following:

• –1 — Assign a unique random seed to each worker. The value of the seed is the worker ID.
• –2 — Do not assign a random seed to the workers.
• Vector — Manually specify the random seed for each worker. The number of elements in the

vector must match the number of workers.

TransferBaseWorkspaceVariables — Option to send model and workspace variables to
parallel workers
"on" (default) | "off"

Option to send model and workspace variables to parallel workers, specified as "on" or "off". When
the option is "on", the host sends variables used in models and defined in the base MATLAB
workspace to the workers.

AttachedFiles — Additional files to attach to the parallel pool
[] (default) | string | string array

Additional files to attach to the parallel pool, specified as a string or string array.

SetupFcn — Function to run before training starts
[] (default) | function handle

Function to run before training starts, specified as a handle to a function having no input arguments.
This function is run once per worker before training begins. Write this function to perform any
processing that you need prior to training.

CleanupFcn — Function to run after training ends
[] (default) | function handle

Function to run after training ends, specified as a handle to a function having no input arguments.
You can write this function to clean up the workspace or perform other processing after training
terminates.

Verbose — Display training progress on the command line
false (0) (default) | true (1)

Display training progress on the command line, specified as the logical values false (0) or true (1).
Set to true to write information from each training episode to the MATLAB command line during
training.

StopOnError — Option to stop training when error occurs
"on" (default) | "off"

Option to stop training when an error occurs during an episode, specified as "on" or "off". When
this option is "off", errors are captured and returned in the SimulationInfo output of train, and
training continues to the next episode.
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Plots — Option to display training progress with Episode Manager
"training-progress" (default) | "none"

Option to display training progress with Episode Manager, specified as "training-progress" or
"none". By default, calling train opens the Reinforcement Learning Episode Manager, which
graphically and numerically displays information about the training progress, such as the reward for
each episode, average reward, number of episodes, and total number of steps. (For more information,
see train.) To turn off this display, set this option to "none".

Object Functions
train Train reinforcement learning agents within a specified environment

Examples

Configure Options for Training

Create an options set for training a reinforcement learning agent. Set the maximum number of
episodes and the maximum number of steps per episode to 1000. Configure the options to stop
training when the average reward equals or exceeds 480, and turn on both the command-line display
and Reinforcement Learning Episode Manager for displaying training results. You can set the options
using name-value pair arguments when you create the options set. Any options that you do not
explicitly set have their default values.

trainOpts = rlTrainingOptions(...
    'MaxEpisodes',1000,...
    'MaxStepsPerEpisode',1000,...
    'StopTrainingCriteria',"AverageReward",...
    'StopTrainingValue',480,...
    'Verbose',true,...
    'Plots',"training-progress")

trainOpts = 
  rlTrainingOptions with properties:

                   MaxEpisodes: 1000
            MaxStepsPerEpisode: 1000
    ScoreAveragingWindowLength: 5
          StopTrainingCriteria: "AverageReward"
             StopTrainingValue: 480
             SaveAgentCriteria: "none"
                SaveAgentValue: "none"
            SaveAgentDirectory: "savedAgents"
                       Verbose: 1
                         Plots: "training-progress"
                   StopOnError: "on"
                   UseParallel: 0
        ParallelizationOptions: [1x1 rl.option.ParallelTraining]

Alternatively, create a default options set and use dot notation to change some of the values.

trainOpts = rlTrainingOptions;
trainOpts.MaxEpisodes = 1000;
trainOpts.MaxStepsPerEpisode = 1000;
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trainOpts.StopTrainingCriteria = "AverageReward";
trainOpts.StopTrainingValue = 480;
trainOpts.Verbose = true;
trainOpts.Plots = "training-progress";

trainOpts

trainOpts = 
  rlTrainingOptions with properties:

                   MaxEpisodes: 1000
            MaxStepsPerEpisode: 1000
    ScoreAveragingWindowLength: 5
          StopTrainingCriteria: "AverageReward"
             StopTrainingValue: 480
             SaveAgentCriteria: "none"
                SaveAgentValue: "none"
            SaveAgentDirectory: "savedAgents"
                       Verbose: 1
                         Plots: "training-progress"
                   StopOnError: "on"
                   UseParallel: 0
        ParallelizationOptions: [1x1 rl.option.ParallelTraining]

You can now use trainOpts as an input argument to the train command.

Configure Options for Training a Multi-Agent Environment

Create an options object for concurrently training three agents in the same environment.

Set the maximum number of episodes and the maximum steps per episode to 1000. Configure the
options to stop training the first agent when its average reward over 5 episodes equals or exceeds
400, the second agent when its average reward over 10 episodes equals or exceeds 500, and the third
when its average reward over 15 episodes equals or exceeds 600. The order of agents is the one used
during environment creation.

Save the agents when the reward for the first agent in the current episode exceeds 100, or when the
reward for the second agent exceeds 120, the reward for the third agent equals or exceeds 140.

Turn on both the command-line display and Reinforcement Learning Episode Manager for displaying
training results. You can set the options using name-value pair arguments when you create the
options set. Any options that you do not explicitly set have their default values.

trainOpts = rlTrainingOptions(...
    'MaxEpisodes',1000,...
    'MaxStepsPerEpisode',1000,...    
    'ScoreAveragingWindowLength',[5 10 15],...        
    'StopTrainingCriteria',"AverageReward",...
    'StopTrainingValue',[400 500 600],...    
    'SaveAgentCriteria',"EpisodeReward",...
    'SaveAgentValue',[100 120 140],...    
    'Verbose',true,...
    'Plots',"training-progress")
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trainOpts = 
  rlTrainingOptions with properties:

                   MaxEpisodes: 1000
            MaxStepsPerEpisode: 1000
    ScoreAveragingWindowLength: [5 10 15]
          StopTrainingCriteria: "AverageReward"
             StopTrainingValue: [400 500 600]
             SaveAgentCriteria: "EpisodeReward"
                SaveAgentValue: [100 120 140]
            SaveAgentDirectory: "savedAgents"
                       Verbose: 1
                         Plots: "training-progress"
                   StopOnError: "on"
                   UseParallel: 0
        ParallelizationOptions: [1x1 rl.option.ParallelTraining]

Alternatively, create a default options set and use dot notation to change some of the values.

trainOpts = rlTrainingOptions;
trainOpts.MaxEpisodes = 1000;
trainOpts.MaxStepsPerEpisode = 1000;

trainOpts.ScoreAveragingWindowLength = [5 10 15];

trainOpts.StopTrainingCriteria = "AverageReward";
trainOpts.StopTrainingValue = [400 500 600];

trainOpts.SaveAgentCriteria = "EpisodeReward";
trainOpts.SaveAgentValue = [100 120 140];

trainOpts.Verbose = true;
trainOpts.Plots = "training-progress";

trainOpts

trainOpts = 
  rlTrainingOptions with properties:

                   MaxEpisodes: 1000
            MaxStepsPerEpisode: 1000
    ScoreAveragingWindowLength: [5 10 15]
          StopTrainingCriteria: "AverageReward"
             StopTrainingValue: [400 500 600]
             SaveAgentCriteria: "EpisodeReward"
                SaveAgentValue: [100 120 140]
            SaveAgentDirectory: "savedAgents"
                       Verbose: 1
                         Plots: "training-progress"
                   StopOnError: "on"
                   UseParallel: 0
        ParallelizationOptions: [1x1 rl.option.ParallelTraining]

You can specify a scalar to apply the same criterion to all agents. For example, use a window length of
10 for all three agents.

trainOpts.ScoreAveragingWindowLength = 10
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trainOpts = 
  rlTrainingOptions with properties:

                   MaxEpisodes: 1000
            MaxStepsPerEpisode: 1000
    ScoreAveragingWindowLength: 10
          StopTrainingCriteria: "AverageReward"
             StopTrainingValue: [400 500 600]
             SaveAgentCriteria: "EpisodeReward"
                SaveAgentValue: [100 120 140]
            SaveAgentDirectory: "savedAgents"
                       Verbose: 1
                         Plots: "training-progress"
                   StopOnError: "on"
                   UseParallel: 0
        ParallelizationOptions: [1x1 rl.option.ParallelTraining]

You can now use trainOpts as an input argument to the train command.

See Also
Topics
“Reinforcement Learning Agents”

Introduced in R2019a
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rlTRPOAgent
Trust region policy optimization reinforcement learning agent

Description
Trust region policy optimization (TRPO) is a model-free, online, on-policy, policy gradient
reinforcement learning method. This algorithm prevents significant performance drops compared to
standard policy gradient methods by keeping the updated policy within a trust region close to the
current policy. The action space can be either discrete or continuous.

For more information on TRPO agents, see “Trust Region Policy Optimization Agents”. For more
information on the different types of reinforcement learning agents, see “Reinforcement Learning
Agents”.

Creation

Syntax
agent = rlTRPOAgent(observationInfo,actionInfo)
agent = rlTRPOAgent(observationInfo,actionInfo,initOpts)

agent = rlTRPOAgent(actor,critic)

agent = rlTRPOAgent( ___ ,agentOptions)

Description

Create Agent from Observation and Action Specifications

agent = rlTRPOAgent(observationInfo,actionInfo) creates a trust region policy
optimization (TRPO) agent for an environment with the given observation and action specifications,
using default initialization options. The actor and critic representations in the agent use default deep
neural networks built from the observation specification observationInfo and the action
specification actionInfo.

agent = rlTRPOAgent(observationInfo,actionInfo,initOpts) creates a TRPO agent for
an environment with the given observation and action specifications. The agent uses default networks
configured using options specified in the initOpts object. TRPO agents do not support recurrent
neural networks. For more information on the initialization options, see
rlAgentInitializationOptions.

Create Agent from Actor and Critic Representations

agent = rlTRPOAgent(actor,critic) creates a TRPO agent with the specified actor and critic,
using the default options for the agent.
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Specify Agent Options

agent = rlTRPOAgent( ___ ,agentOptions) creates a TRPO agent and sets the AgentOptions
property to the agentOptions input argument. Use this syntax after any of the input arguments in
the previous syntaxes.

Input Arguments

observationInfo — Observation specifications
specification object | array of specification objects

Observation specifications, specified as a reinforcement learning specification object or an array of
specification objects defining properties such as dimensions, data type, and names of the observation
signals.

You can extract observationInfo from an existing environment or agent using
getObservationInfo. You can also construct the specifications manually using rlFiniteSetSpec
or rlNumericSpec.

actionInfo — Action specifications
specification object

Action specifications, specified as a reinforcement learning specification object defining properties
such as dimensions, data type, and names of the action signals.

For a discrete action space, you must specify actionInfo as an rlFiniteSetSpec object.

For a continuous action space, you must specify actionInfo as an rlNumericSpec object.

You can extract actionInfo from an existing environment or agent using getActionInfo. You can
also construct the specification manually using rlFiniteSetSpec or rlNumericSpec.

initOpts — Agent initialization options
rlAgentInitializationOptions object

Agent initialization options, specified as an rlAgentInitializationOptions object.

TRPO agents do not support recurrent neural networks. Therefore initOpts.UseRNNmust be
false.

actor — Actor network representation
rlStochasticActorRepresentation object

Actor network representation for the policy, specified as an rlStochasticActorRepresentation
object. For more information on creating actor representations, see “Create Policy and Value
Function Representations”.

Actor representations for TRPO agents use only the UseDevice option in an
rlRepresentationOptions object. Therefore, if you use a CPU for deep neural network
computations, you can use the default representation options.

critic — Critic network representation
rlValueRepresentation object
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Critic network representation for estimating the discounted long-term reward, specified as an
rlValueRepresentation. For more information on creating critic representations, see “Create
Policy and Value Function Representations”.

Properties
AgentOptions — Agent options
rlTRPOAgentOptions object

Agent options, specified as an rlTRPOAgentOptions object.

Object Functions
train Train reinforcement learning agents within a specified environment
sim Simulate trained reinforcement learning agents within specified

environment
getAction Obtain action from agent or actor representation given environment

observations
getActor Get actor representation from reinforcement learning agent
setActor Set actor representation of reinforcement learning agent
getCritic Get critic representation from reinforcement learning agent
setCritic Set critic representation of reinforcement learning agent
generatePolicyFunction Create function that evaluates trained policy of reinforcement learning

agent

Examples

Create Discrete TRPO Agent from Observation and Action Specifications

Create an environment with a discrete action space, and obtain its observation and action
specifications. For this example, load the environment used in the example “Create Agent Using Deep
Network Designer and Train Using Image Observations”. This environment has two observations: a
50-by-50 grayscale image and a scalar (the angular velocity of the pendulum). The action is a scalar
with five possible elements (a torque of either -2, -1, 0, 1, or 2 Nm applied to a swinging pole).

% load predefined environment
env = rlPredefinedEnv("SimplePendulumWithImage-Discrete");

Obtain the observation and action specifications for this environment.

obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

The agent creation function initializes the actor and critic networks randomly. You can ensure
reproducibility by fixing the seed of the random generator. To do so, uncomment the following line.

% rng(0)

Create a TRPO agent from the environment observation and action specifications.

agent = rlTRPOAgent(obsInfo,actInfo);

To check your agent, use getAction to return the action from a random observation.
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getAction(agent,{rand(obsInfo(1).Dimension),rand(obsInfo(2).Dimension)})

ans = 1x1 cell array
    {[-2]}

You can now test and train the agent within the environment.

Create Continuous TRPO Agent Using Initialization Options

Create an environment with a continuous action space and obtain its observation and action
specifications. For this example, load the environment used in the example “Train DDPG Agent to
Swing Up and Balance Pendulum with Image Observation”. This environment has two observations: a
50-by-50 grayscale image and a scalar (the angular velocity of the pendulum). The action is a scalar
representing a torque ranging continuously from -2 to 2 Nm.

env = rlPredefinedEnv("SimplePendulumWithImage-Continuous");

Obtain observation and action specifications for this environment.

obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

Create an agent initialization options object, specifying that each hidden fully connected layer in the
network must have 128 neurons.

initOpts = rlAgentInitializationOptions('NumHiddenUnit',128);

The agent creation function initializes the actor and critic networks randomly. You can ensure
reproducibility by fixing the seed of the random generator. To do so, uncomment the following line.

% rng(0)

Create a TRPO agent from the environment observation and action specifications using the specified
initialization options.

agent = rlTRPOAgent(obsInfo,actInfo,initOpts);

Reduce the critic learning rate to 1e-3.

critic = getCritic(agent);
critic.Options.LearnRate = 1e-3;
agent  = setCritic(agent,critic);

Extract the deep neural networks from both the agent actor and critic.

actorNet = getModel(getActor(agent));
criticNet = getModel(getCritic(agent));

You can verify that the networks have 128 units in their hidden fully connected layers. For example,
display the layers of the critic network.

criticNet.Layers

ans = 
  11x1 Layer array with layers:
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     1   'input_1'        Image Input       50x50x1 images
     2   'conv_1'         Convolution       64 3x3x1 convolutions with stride [1  1] and padding [0  0  0  0]
     3   'relu_input_1'   ReLU              ReLU
     4   'fc_1'           Fully Connected   128 fully connected layer
     5   'input_2'        Feature Input     1 features
     6   'fc_2'           Fully Connected   128 fully connected layer
     7   'concat'         Concatenation     Concatenation of 2 inputs along dimension 1
     8   'relu_body'      ReLU              ReLU
     9   'fc_body'        Fully Connected   128 fully connected layer
    10   'body_output'    ReLU              ReLU
    11   'output'         Fully Connected   1 fully connected layer

To check your agent, use getAction to return the action from a random observation.

getAction(agent,{rand(obsInfo(1).Dimension),rand(obsInfo(2).Dimension)})

ans = 1x1 cell array
    {[0.9228]}

You can now test and train the agent within the environment.

Create Trust Region Policy Optimization Agent

Create an environment interface, and obtain its observation and action specifications.

env = rlPredefinedEnv("CartPole-Discrete");
obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

Create a critic representation.

% Create the network to be used as approximator in the critic.
criticNetwork = [
    featureInputLayer(4,'Normalization','none','Name','state')
    fullyConnectedLayer(1,'Name','CriticFC')];

% Set options for the critic.
criticOpts = rlRepresentationOptions('LearnRate',8e-3,'GradientThreshold',1);

% Create the critic.
critic = rlValueRepresentation(criticNetwork,obsInfo,'Observation',{'state'},criticOpts);

Create an actor representation.

% Create the network to be used as approximator in the actor.
actorNetwork = [
    featureInputLayer(4,'Normalization','none','Name','state')
    fullyConnectedLayer(2,'Name','action')];

% Create the actor.
actor = rlStochasticActorRepresentation(actorNetwork,obsInfo,actInfo,...
    'Observation',{'state'});

Specify agent options, and create a TRPO agent using the environment, actor, and critic.
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agentOpts = rlTRPOAgentOptions(...
    'ExperienceHorizon',1024, ...
    'DiscountFactor',0.95);
agent = rlTRPOAgent(actor,critic,agentOpts)

agent = 
  rlTRPOAgent with properties:

    AgentOptions: [1x1 rl.option.rlTRPOAgentOptions]

To check your agent, use getAction to return the action from a random observation.

getAction(agent,{rand(4,1)})

ans = 1x1 cell array
    {[-10]}

You can now test and train the agent against the environment.

Create Continuous TRPO Agent

Create an environment with a continuous action space, and obtain its observation and action
specifications. For this example, load the double integrator continuous action space environment used
in the example “Train DDPG Agent to Control Double Integrator System”. The observation from the
environment is a vector containing the position and velocity of a mass. The action is a scalar
representing a force applied to the mass, ranging continuously from -2 to 2 Newton.

env = rlPredefinedEnv("DoubleIntegrator-Continuous");
obsInfo = getObservationInfo(env)

obsInfo = 
  rlNumericSpec with properties:

     LowerLimit: -Inf
     UpperLimit: Inf
           Name: "states"
    Description: "x, dx"
      Dimension: [2 1]
       DataType: "double"

actInfo = getActionInfo(env)

actInfo = 
  rlNumericSpec with properties:

     LowerLimit: -Inf
     UpperLimit: Inf
           Name: "force"
    Description: [0x0 string]
      Dimension: [1 1]
       DataType: "double"
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Since the action must be contained in a limited range, set the upper and lower limit of the action
signal accordingly. You must do so when the network representation for the actor has a nonlinear
output layer that must be scaled to produce an output in the desired range.

actInfo.LowerLimit=-2;
actInfo.UpperLimit=2;

Create a critic representation. TRPO agents use a rlValueRepresentation for the critic. For
continuous observation spaces, you can use either a deep neural network or a custom basis
representation. For this example, create a deep neural network as the underlying approximator.

% create the network to be used as approximator in the critic
% it must take the observation signal as input and produce a scalar value
criticNet = [
    imageInputLayer([obsInfo.Dimension 1],'Normalization','none','Name','state')
    fullyConnectedLayer(10,'Name', 'fc_in')
    reluLayer('Name', 'relu')
    fullyConnectedLayer(1,'Name','out')];

% set some training options for the critic
criticOpts = rlRepresentationOptions('LearnRate',8e-3,'GradientThreshold',1);

% create the critic representation from the network
critic = rlValueRepresentation(criticNet,obsInfo,'Observation',{'state'},criticOpts);

TRPO agents use a rlStochasticActorRepresentation. For continuous action spaces, stochastic
actors can only use a neural network approximator.

The observation input (here called myobs) must accept a two-dimensional vector, as specified in
obsInfo. The output (here called myact) must also be a two-dimensional vector (twice the number
of dimensions specified in actInfo). The elements of the output vector represent, in sequence, all
the means and all the standard deviations of every action (in this case there is only one mean value
and one standard deviation).

The fact that standard deviations must be non-negative while mean values must fall within the output
range means that the network must have two separate paths. The first path is for the mean values,
and any output nonlinearity must be scaled so that it can produce outputs in the output range. The
second path is for the standard deviations, and you must use a softplus or relu layer to enforce non-
negativity.

% input path layers (2 by 1 input and a 1 by 1 output)
inPath = [ 
    imageInputLayer([obsInfo.Dimension 1], 'Normalization','none','Name','state')
    fullyConnectedLayer(10,'Name', 'ip_fc')   % 10 by 1 output
    reluLayer('Name', 'ip_relu')              % nonlinearity
    fullyConnectedLayer(1,'Name','ip_out') ]; % 1 by 1 output

% path layers for mean value (1 by 1 input and 1 by 1 output)
% using scalingLayer to scale the range
meanPath = [
    fullyConnectedLayer(15,'Name', 'mp_fc1') % 15 by 1 output
    reluLayer('Name', 'mp_relu')             % nonlinearity
    fullyConnectedLayer(1,'Name','mp_fc2');  % 1 by 1 output
    tanhLayer('Name','tanh');                % output range: (-1,1)
    scalingLayer('Name','mp_out','Scale',actInfo.UpperLimit) ]; % output range: (-2N,2N)

% path layers for standard deviation (1 by 1 input and output)
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% using softplus layer to make it non negative
sdevPath = [
    fullyConnectedLayer(15,'Name', 'vp_fc1') % 15 by 1 output
    reluLayer('Name', 'vp_relu')             % nonlinearity
    fullyConnectedLayer(1,'Name','vp_fc2');  % 1 by 1 output
    softplusLayer('Name', 'vp_out') ];       % output range: (0,+Inf)

% conctatenate two inputs (along dimension #3) to form a single (2 by 1) output layer
outLayer = concatenationLayer(1,2,'Name','mean&sdev');

% add layers to layerGraph network object
actorNet = layerGraph(inPath);
actorNet = addLayers(actorNet,meanPath);
actorNet = addLayers(actorNet,sdevPath);
actorNet = addLayers(actorNet,outLayer);

% connect layers: you must conect the mean value path to the first input of the concatenation layer
actorNet = connectLayers(actorNet,'ip_out','mp_fc1/in');     % connect output of inPath to meanPath input
actorNet = connectLayers(actorNet,'ip_out','vp_fc1/in');     % connect output of inPath to sdevPath input
actorNet = connectLayers(actorNet,'mp_out','mean&sdev/in1'); % connect output of meanPath to mean&sdev input #1
actorNet = connectLayers(actorNet,'vp_out','mean&sdev/in2'); % connect output of sdevPath to mean&sdev input #2

% plot network 
plot(actorNet)

Create the stochastic actor representation using the deep neural network actorNet.
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actor = rlStochasticActorRepresentation(actorNet,obsInfo,actInfo,...
    'Observation',{'state'});

Specify agent options, and create a TRPO agent using the actor, critic and agent options.

agentOpts = rlTRPOAgentOptions(...
    'ExperienceHorizon',1024, ...
    'DiscountFactor',0.95);
agent = rlTRPOAgent(actor,critic,agentOpts)

agent = 
  rlTRPOAgent with properties:

    AgentOptions: [1x1 rl.option.rlTRPOAgentOptions]

To check your agent, use getAction to return the action from a random observation.

getAction(agent,{rand(2,1)})

ans = 1x1 cell array
    {[0.6668]}

You can now test and train the agent within the environment.

Tips
• For continuous action spaces, this agent does not enforce the constraints set by the action
specification. In this case, you must enforce action space constraints within the environment.

• While tuning the learning rate of the actor network is necessary for PPO agents, it is not
necessary for TRPO agents.

• For high-dimensional observations, such as for images, it is recommended to use PPO, SAC, or
TD3 agents.

See Also
rlTRPOAgentOptions | rlStochasticActorRepresentation | rlValueRepresentation |
Deep Network Designer

Topics
“Trust Region Policy Optimization Agents”
“Reinforcement Learning Agents”
“Train Reinforcement Learning Agents”

Introduced in R2021b
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rlTRPOAgentOptions
Options for TRPO agent

Description
Use an rlTRPOAgentOptions object to specify options for trust region policy optimization (TRPO)
agents. To create a TRPO agent, use rlTRPOAgent.

For more information on TRPO agents, see “Trust Region Policy Optimization Agents”.

For more information on the different types of reinforcement learning agents, see “Reinforcement
Learning Agents”.

Creation

Syntax
opt = rlTRPOAgentOptions
opt = rlTRPOAgentOptions(Name,Value)

Description

opt = rlTRPOAgentOptions creates an rlPPOAgentOptions object for use as an argument when
creating a TRPO agent using all default settings. You can modify the object properties using dot
notation.

opt = rlTRPOAgentOptions(Name,Value) sets option properties on page 3-201 using name-
value arguments. For example, rlTRPOAgentOptions('DiscountFactor',0.95) creates an
option set with a discount factor of 0.95. You can specify multiple name-value arguments. Enclose
each property name in quotes.

Properties
ExperienceHorizon — Number of steps the agent interacts with the environment before
learning
512 (default) | positive integer

Number of steps the agent interacts with the environment before learning from its experience,
specified as a positive integer.

The ExperienceHorizon value must be greater than or equal to the MiniBatchSize value.

MiniBatchSize — Mini-batch size
128 (default) | positive integer

Mini-batch size used for each learning epoch, specified as a positive integer. When the agent uses a
recurrent neural network, MiniBatchSize is treated as the training trajectory length.
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The MiniBatchSize value must be less than or equal to the ExperienceHorizon value.

EntropyLossWeight — Entropy loss weight
0.01 (default) | scalar value between 0 and 1

Entropy loss weight, specified as a scalar value between 0 and 1. A higher entropy loss weight value
promotes agent exploration by applying a penalty for being too certain about which action to take.
Doing so can help the agent move out of local optima.

When gradients are computed during training, an additional gradient component is computed for
minimizing the entropy loss. For more information, see “Entropy Loss”.

NumEpoch — Number of epochs
1 (default) | positive integer

Number of epochs for which the actor and critic networks learn from the current experience set,
specified as a positive integer.

AdvantageEstimateMethod — Method for estimating advantage values
"gae" (default) | "finite-horizon"

Method for estimating advantage values, specified as one of the following:

• "gae" — Generalized advantage estimator
• "finite-horizon" — Finite horizon estimation

For more information on these methods, see the training algorithm information in “Proximal Policy
Optimization Agents”.

GAEFactor — Smoothing factor for generalized advantage estimator
0.95 (default) | scalar value between 0 and 1

Smoothing factor for generalized advantage estimator, specified as a scalar value between 0 and 1,
inclusive. This option applies only when the AdvantageEstimateMethod option is "gae"

UseDeterministicExploitation — Use action with maximum likelihood
false (default) | true

Option to return the action with maximum likelihood for simulation and policy generation, specified
as a logical value. When UseDeterministicExploitation is set to true, the action with
maximum likelihood is always used in sim and generatePolicyFunction, which causes the agent
to behave deterministically.

When UseDeterministicExploitation is set to false, the agent samples actions from
probability distributions, which causes the agent to behave stochastically.

KLDivergenceLimit — Upper limit for KL divergence
0.01 (default) | positive scalar

Upper limit for the Kullback-Leibler (KL) divergence between the old policy and the current policy,
specified as a positive scalar.

NumIterationsConjugateGradient — Maximum number of iterations for conjugate
gradient decent
10 (default) | positive integer
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Maximum number of iterations for conjugate gradient decent, specified as positive integer.

ConjugateGradientDamping — Conjugate gradient damping factor
1e-4 (default) | nonnegative scalar

Conjugate gradient damping factor for numerical stability, specified as a nonnegative scalar.

ConjugateGradientResidualTolerance — Conjugate gradient residual tolerance factor
1e-8 (default) | positive scalar

Conjugate gradient residual tolerance, specified as a positive scalar. Once the residual for the
conjugate gradient algorithm is below this tolerance, the algorithm stops.

Typically, the default value works well for most cases.

NumIterationsLineSearch — Number of iterations for line search
10 (default) | positive integer

Number of iterations for line search, specified as a positive integer.

Typically, the default value works well for most cases.

NormalizedAdvantageMethod — Method for normalizing advantage function
"none" (default) | "current | "moving"

Method for normalizing advantage function values, specified as one of the following:

• "none" — Do not normalize advantage values
• "current" — Normalize the advantage function using the mean and standard deviation for the

current mini-batch of experiences.
• "moving" — Normalize the advantage function using the mean and standard deviation for a

moving window of recent experiences. To specify the window size, set the
AdvantageNormalizingWindow option.

In some environments, you can improve agent performance by normalizing the advantage function
during training. The agent normalizes the advantage function by subtracting the mean advantage
value and scaling by the standard deviation.

AdvantageNormalizingWindow — Window size for normalizing advantage function
1e6 (default) | positive integer

Window size for normalizing advantage function values, specified as a positive integer. Use this
option when the NormalizedAdvantageMethod option is "moving".

SampleTime — Sample time of agent
1 (default) | positive scalar

Sample time of agent, specified as a positive scalar.

Within a Simulink environment, the agent gets executed every SampleTime seconds of simulation
time.

Within a MATLAB environment, the agent gets executed every time the environment advances.
However, SampleTime is the time interval between consecutive elements in the output experience
returned by sim or train.
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DiscountFactor — Discount factor
0.99 (default) | positive scalar less than or equal to 1

Discount factor applied to future rewards during training, specified as a positive scalar less than or
equal to 1.

Object Functions
rlTRPOAgent Trust region policy optimization reinforcement learning agent

Examples

Create TRPO Agent Options Object

Create a TRPO agent options object, specifying the discount factor.

opt = rlTRPOAgentOptions('DiscountFactor',0.9)

opt = 
  rlTRPOAgentOptions with properties:

                     ExperienceHorizon: 512
                         MiniBatchSize: 128
                     EntropyLossWeight: 0.0100
                              NumEpoch: 1
               AdvantageEstimateMethod: "gae"
                             GAEFactor: 0.9500
          UseDeterministicExploitation: 0
              ConjugateGradientDamping: 1.0000e-04
                     KLDivergenceLimit: 0.0100
        NumIterationsConjugateGradient: 10
               NumIterationsLineSearch: 10
    ConjugateGradientResidualTolerance: 1.0000e-08
             NormalizedAdvantageMethod: "none"
            AdvantageNormalizingWindow: 1000000
                            SampleTime: 1
                        DiscountFactor: 0.9000

You can modify options using dot notation. For example, set the agent sample time to 0.1.

opt.SampleTime = 0.1;

See Also
Topics
“Trust Region Policy Optimization Agents”

Introduced in R2021b
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rlValueRepresentation
Value function critic representation for reinforcement learning agents

Description
This object implements a value function approximator to be used as a critic within a reinforcement
learning agent. A value function is a function that maps an observation to a scalar value. The output
represents the expected total long-term reward when the agent starts from the given observation and
takes the best possible action. Value function critics therefore only need observations (but not
actions) as inputs. After you create an rlValueRepresentation critic, use it to create an agent
relying on a value function critic, such as an rlACAgent, rlPGAgent, or rlPPOAgent. For an
example of this workflow, see “Create Actor and Critic Representations” on page 3-208. For more
information on creating representations, see “Create Policy and Value Function Representations”.

Creation

Syntax
critic = rlValueRepresentation(net,observationInfo,'Observation',obsName)
critic = rlValueRepresentation(tab,observationInfo)
critic = rlValueRepresentation({basisFcn,W0},observationInfo)
critic = rlValueRepresentation( ___ ,options)

Description

critic = rlValueRepresentation(net,observationInfo,'Observation',obsName)
creates the value function based critic from the deep neural network net. This syntax sets the
ObservationInfo property of critic to the input observationInfo. obsName must contain the
names of the input layers of net.

critic = rlValueRepresentation(tab,observationInfo) creates the value function based
critic with a discrete observation space, from the value table tab, which is an rlTable object
containing a column array with as many elements as the possible observations. This syntax sets the
ObservationInfo property of critic to the input observationInfo.

critic = rlValueRepresentation({basisFcn,W0},observationInfo) creates the value
function based critic using a custom basis function as underlying approximator. The first input
argument is a two-elements cell in which the first element contains the handle basisFcn to a custom
basis function, and the second element contains the initial weight vector W0. This syntax sets the
ObservationInfo property of critic to the input observationInfo.

critic = rlValueRepresentation( ___ ,options) creates the value function based critic
using the additional option set options, which is an rlRepresentationOptions object. This
syntax sets the Options property of critic to the options input argument. You can use this syntax
with any of the previous input-argument combinations.
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Input Arguments

net — Deep neural network
array of Layer objects | layerGraph object | DAGNetwork object | SeriesNetwork object |
dlNetwork object

Deep neural network used as the underlying approximator within the critic, specified as one of the
following:

• Array of Layer objects
• layerGraph object
• DAGNetwork object
• SeriesNetwork object
• dlnetwork object

The network input layers must be in the same order and with the same data type and dimensions as
the signals defined in ObservationInfo. Also, the names of these input layers must match the
observation names listed in obsName.

rlValueRepresentation objects support recurrent deep neural networks.

For a list of deep neural network layers, see “List of Deep Learning Layers”. For more information on
creating deep neural networks for reinforcement learning, see “Create Policy and Value Function
Representations”.

obsName — Observation names
string | character vector | cell array of character vectors

Observation names, specified as a cell array of strings or character vectors. The observation names
must be the names of the input layers in net. These network layers must be in the same order and
with the same data type and dimensions as the signals defined in ObservationInfo.
Example: {'my_obs'}

tab — Value table
rlTable object

Value table, specified as an rlTable object containing a column vector with length equal to the
number of observations. The element i is the expected cumulative long-term reward when the agent
starts from the given observation s and takes the best possible action. The elements of this vector are
the learnable parameters of the representation.

basisFcn — Custom basis function
function handle

Custom basis function, specified as a function handle to a user-defined function. The user defined
function can either be an anonymous function or a function on the MATLAB path. The output of the
critic is c = W'*B, where W is a weight vector and B is the column vector returned by the custom
basis function. c is the expected cumulative long term reward when the agent starts from the given
observation and takes the best possible action. The learnable parameters of this representation are
the elements of W.

When creating a value function critic representation, your basis function must have the following
signature.
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B = myBasisFunction(obs1,obs2,...,obsN)

Here obs1 to obsN are observations in the same order and with the same data type and dimensions
as the signals defined in ObservationInfo.
Example: @(obs1,obs2,obs3) [obs3(1)*obs1(1)^2; abs(obs2(5)+obs1(2))]

W0 — Initial value of the basis function weights
column vector

Initial value of the basis function weights, W, specified as a column vector having the same length as
the vector returned by the basis function.

Properties
Options — Representation options
rlRepresentationOptions object

Representation options, specified as an rlRepresentationOptions object. Available options
include the optimizer used for training and the learning rate.

ObservationInfo — Observation specifications
rlFiniteSetSpec object | rlNumericSpec object | array

Observation specifications, specified as an rlFiniteSetSpec or rlNumericSpec object or an array
containing a mix of such objects. These objects define properties such as the dimensions, data types,
and names of the observation signals.

rlValueRepresentation sets the ObservationInfo property of critic to the input
observationInfo.

You can extract ObservationInfo from an existing environment or agent using
getObservationInfo. You can also construct the specifications manually.

Object Functions
rlACAgent Actor-critic reinforcement learning agent
rlPGAgent Policy gradient reinforcement learning agent
rlPPOAgent Proximal policy optimization reinforcement learning agent
getValue Obtain estimated value function representation

Examples

Create Value Function Critic from Deep Neural Network

Create an observation specification object (or alternatively use getObservationInfo to extract the
specification object from an environment). For this example, define the observation space as a
continuous four-dimensional space, so that a single observation is a column vector containing 4
doubles.

obsInfo = rlNumericSpec([4 1]);

Create a deep neural network to approximate the value function within the critic. The input of the
network (here called myobs) must accept a four-element vector (the observation vector defined by
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obsInfo), and the output must be a scalar (the value, representing the expected cumulative long-
term reward when the agent starts from the given observation).

net = [featureInputLayer(4, 'Normalization','none','Name','myobs') 
       fullyConnectedLayer(1,'Name','value')];

Create the critic using the network, observation specification object, and name of the network input
layer.

critic = rlValueRepresentation(net,obsInfo,'Observation',{'myobs'})

critic = 
  rlValueRepresentation with properties:

    ObservationInfo: [1x1 rl.util.rlNumericSpec]
            Options: [1x1 rl.option.rlRepresentationOptions]

To check your critic, use the getValue function to return the value of a random observation, using
the current network weights.

v = getValue(critic,{rand(4,1)})

v = single
    0.7904

You can now use the critic (along with an actor) to create an agent relying on a value function critic
(such as rlACAgent or rlPGAgent).

Create Actor and Critic Representations

Create an actor representation and a critic representation that you can use to define a reinforcement
learning agent such as an Actor Critic (AC) agent.

For this example, create actor and critic representations for an agent that can be trained against the
cart-pole environment described in “Train AC Agent to Balance Cart-Pole System”. First, create the
environment. Then, extract the observation and action specifications from the environment. You need
these specifications to define the agent and critic representations.

env = rlPredefinedEnv("CartPole-Discrete");
obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);

For a state-value-function critic such as those used for AC or PG agents, the inputs are the
observations and the output should be a scalar value, the state value. For this example, create the
critic representation using a deep neural network with one output, and with observation signals
corresponding to x, xdot, theta, and thetadot as described in “Train AC Agent to Balance Cart-
Pole System”. You can obtain the number of observations from the obsInfo specification. Name the
network layer input 'observation'.

numObservation = obsInfo.Dimension(1);
criticNetwork = [
    featureInputLayer(numObservation,'Normalization','none','Name','observation')
    fullyConnectedLayer(1,'Name','CriticFC')];
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Specify options for the critic representation using rlRepresentationOptions. These options
control the learning of the critic network parameters. For this example, set the learning rate to 0.05
and the gradient threshold to 1.

repOpts = rlRepresentationOptions('LearnRate',5e-2,'GradientThreshold',1);

Create the critic representation using the specified neural network and options. Also, specify the
action and observation information for the critic. Set the observation name to 'observation',
which is the of the criticNetwork input layer.

critic = rlValueRepresentation(criticNetwork,obsInfo,'Observation',{'observation'},repOpts)

critic = 
  rlValueRepresentation with properties:

    ObservationInfo: [1x1 rl.util.rlNumericSpec]
            Options: [1x1 rl.option.rlRepresentationOptions]

Similarly, create a network for the actor. An AC agent decides which action to take given observations
using an actor representation. For an actor, the inputs are the observations, and the output depends
on whether the action space is discrete or continuous. For the actor of this example, there are two
possible discrete actions, –10 or 10. To create the actor, use a deep neural network with the same
observation input as the critic, that can output these two values. You can obtain the number of
actions from the actInfo specification. Name the output 'action'.

numAction = numel(actInfo.Elements); 
actorNetwork = [
    featureInputLayer(numObservation,'Normalization','none','Name','observation')
    fullyConnectedLayer(numAction,'Name','action')];

Create the actor representation using the observation name and specification and the same
representation options.

actor = rlStochasticActorRepresentation(actorNetwork,obsInfo,actInfo,...
    'Observation',{'observation'},repOpts)

actor = 
  rlStochasticActorRepresentation with properties:

         ActionInfo: [1x1 rl.util.rlFiniteSetSpec]
    ObservationInfo: [1x1 rl.util.rlNumericSpec]
            Options: [1x1 rl.option.rlRepresentationOptions]

Create an AC agent using the actor and critic representations.

agentOpts = rlACAgentOptions(...
    'NumStepsToLookAhead',32,...
    'DiscountFactor',0.99);
agent = rlACAgent(actor,critic,agentOpts)

agent = 
  rlACAgent with properties:

    AgentOptions: [1x1 rl.option.rlACAgentOptions]
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For additional examples showing how to create actor and critic representations for different agent
types, see:

• “Train DDPG Agent to Control Double Integrator System”
• “Train DQN Agent to Balance Cart-Pole System”

Create Value Function Critic from Table

Create a finite set observation specification object (or alternatively use getObservationInfo to
extract the specification object from an environment with a discrete observation space). For this
example, define the observation space as a finite set consisting of 4 possible values.

obsInfo = rlFiniteSetSpec([1 3 5 7]);

Create a table to approximate the value function within the critic.

vTable = rlTable(obsInfo);

The table is a column vector in which each entry stores the expected cumulative long-term reward for
each possible observation as defined by obsInfo. You can access the table using the Table property
of the vTable object. The initial value of each element is zero.

vTable.Table

ans = 4×1

     0
     0
     0
     0

You can also initialize the table to any value, in this case, an array containing all the integers from 1
to 4.

vTable.Table = reshape(1:4,4,1)

vTable = 
  rlTable with properties:

    Table: [4x1 double]

Create the critic using the table and the observation specification object.

critic = rlValueRepresentation(vTable,obsInfo)

critic = 
  rlValueRepresentation with properties:

    ObservationInfo: [1x1 rl.util.rlFiniteSetSpec]
            Options: [1x1 rl.option.rlRepresentationOptions]

To check your critic, use the getValue function to return the value of a given observation, using the
current table entries.
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v = getValue(critic,{7})

v = 4

You can now use the critic (along with an actor) to create an agent relying on a value function critic
(such as rlACAgent or rlPGAgent agent).

Create Value Function Critic from Custom Basis Function

Create an observation specification object (or alternatively use getObservationInfo to extract the
specification object from an environment). For this example, define the observation space as a
continuous four-dimensional space, so that a single observation is a column vector containing 4
doubles.

obsInfo = rlNumericSpec([4 1]);

Create a custom basis function to approximate the value function within the critic. The custom basis
function must return a column vector. Each vector element must be a function of the observations
defined by obsInfo.

myBasisFcn = @(myobs) [myobs(2)^2; myobs(3)+exp(myobs(1)); abs(myobs(4))]

myBasisFcn = function_handle with value:
    @(myobs)[myobs(2)^2;myobs(3)+exp(myobs(1));abs(myobs(4))]

The output of the critic is the scalar W'*myBasisFcn(myobs), where W is a weight column vector
which must have the same size of the custom basis function output. This output is the expected
cumulative long term reward when the agent starts from the given observation and takes the best
possible action. The elements of W are the learnable parameters.

Define an initial parameter vector.

W0 = [3;5;2];

Create the critic. The first argument is a two-element cell containing both the handle to the custom
function and the initial weight vector. The second argument is the observation specification object.

critic = rlValueRepresentation({myBasisFcn,W0},obsInfo)

critic = 
  rlValueRepresentation with properties:

    ObservationInfo: [1x1 rl.util.rlNumericSpec]
            Options: [1x1 rl.option.rlRepresentationOptions]

To check your critic, use the getValue function to return the value of a given observation, using the
current parameter vector.

v = getValue(critic,{[2 4 6 8]'})

v = 
  1x1 dlarray
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  130.9453

You can now use the critic (along with an with an actor) to create an agent relying on a value function
critic (such as rlACAgent or rlPGAgent).

Create Value Function Critic from Recurrent Neural Network

Create an environment and obtain observation and action information.

env = rlPredefinedEnv('CartPole-Discrete');
obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);
numObs = obsInfo.Dimension(1);
numDiscreteAct = numel(actInfo.Elements);

Create a recurrent deep neural network for the critic. To create a recurrent neural network, use a
sequenceInputLayer as the input layer and include at least one lstmLayer.

criticNetwork = [
    sequenceInputLayer(numObs,'Normalization','none','Name','state')
    fullyConnectedLayer(8, 'Name','fc')
    reluLayer('Name','relu')
    lstmLayer(8,'OutputMode','sequence','Name','lstm')
    fullyConnectedLayer(1,'Name','output')];

Create a value function representation object for the critic.

criticOptions = rlRepresentationOptions('LearnRate',1e-2,'GradientThreshold',1);
critic = rlValueRepresentation(criticNetwork,obsInfo,...
    'Observation','state',criticOptions);

See Also
Functions
rlRepresentationOptions | getActionInfo | getObservationInfo

Topics
“Create Policy and Value Function Representations”
“Reinforcement Learning Agents”

Introduced in R2020a
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scalingLayer
Scaling layer for actor or critic network

Description
A scaling layer linearly scales and biases an input array U, giving an output Y = Scale.*U + Bias.
You can incorporate this layer into the deep neural networks you define for actors or critics in
reinforcement learning agents. This layer is useful for scaling and shifting the outputs of nonlinear
layers, such as tanhLayer and sigmoid.

For instance, a tanhLayer gives bounded output that falls between –1 and 1. If your actor network
output has different bounds (as defined in the actor specification), you can include a ScalingLayer
as an output to scale and shift the actor network output appropriately.

The parameters of a ScalingLayer object are not learnable.

Creation

Syntax
sLayer = scalingLayer
sLayer = scalingLayer(Name,Value)

Description

sLayer = scalingLayer creates a scaling layer with default property values.

sLayer = scalingLayer(Name,Value) sets properties on page 3-213 using name-value pairs. For
example, scalingLayer('Scale',0.5) creates a scaling layer that scales its input by 0.5. Enclose
each property name in quotes.

Properties
Name — Name of layer
'scaling' (default) | character vector

Name of layer, specified as a character vector. To include a layer in a layer graph, you must specify a
nonempty unique layer name. If you train a series network with this layer and Name is set to '', then
the software automatically assigns a name to the layer at training time.

Description — Description of layer
'Scaling layer' (default) | character vector

This property is read-only.

Description of layer, specified as a character vector. When you create the scaling layer, you can use
this property to give it a description that helps you identify its purpose.
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Scale — Element-wise scale on input
1 (default) | scalar | array

Element-wise scale on the input to the scaling layer, specified as one of the following:

• Scalar — Specify the same scale factor for all elements of the input array.
• Array with the same dimensions as the input array — Specify different scale factors for each

element of the input array.

The scaling layer takes an input U and generates the output Y = Scale.*U + Bias.

Bias — Element-wise bias on input
0 (default) | scalar | array

Element-wise bias on the input to the scaling layer, specified as one of the following:

• Scalar — Specify the same bias for all elements of the input array.
• Array with the same dimensions as the input array — Specify a different bias for each element of

the input array.

The scaling layer takes an input U and generates the output Y = Scale.*U + Bias.

Examples

Create Scaling Layer

Create a scaling layer that converts an input array U to the output array Y = 0.1.*U - 0.4.

sLayer = scalingLayer('Scale',0.1,'Bias',-0.4)

sLayer = 
  ScalingLayer with properties:

     Name: 'scaling'
    Scale: 0.1000
     Bias: -0.4000

   Learnable Parameters
    No properties.

   State Parameters
    No properties.

  Show all properties

Confirm that the scaling layer scales and offsets an input array as expected.

predict(sLayer,[10,20,30])

ans = 1×3

    0.6000    1.6000    2.6000
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You can incorporate sLayer into an actor network or critic network for reinforcement learning.

Specify Different Scale and Bias for Each Input Element

Assume that the layer preceding the scalingLayer is a tanhLayer with three outputs aligned
along the first dimension, and that you want to apply a different scaling factor and bias to each out
using a scalingLayer.

scale = [2.5 0.4 10]';
bias = [5 0 -50]';

Create the scalingLayer object.

sLayer = scalingLayer('Scale',scale,'Bias',bias);

Confirm that the scaling layer applies the correct scale and bias values to an array with the expected
dimensions.

testData = [10 10 10]';
predict(sLayer,testData)

ans = 3×1

    30
     4
    50

Extended Capabilities
GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
quadraticLayer | softplusLayer

Topics
“Train DDPG Agent to Swing Up and Balance Pendulum”
“Create Policy and Value Function Representations”

Introduced in R2019a
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SimulinkEnvWithAgent
Reinforcement learning environment with a dynamic model implemented in Simulink

Description
The SimulinkEnvWithAgent object represents a reinforcement learning environment that uses a
dynamic model implemented in Simulink. The environment object acts as an interface such that when
you call sim or train, these functions in turn call the Simulink model to generate experiences for
the agents.

Creation
To create a SimulinkEnvWithAgent object, use one of the following functions.

• rlSimulinkEnv — Create an environment using a Simulink model with at least one RL Agent
block.

• createIntegratedEnv — Use a reference model as a reinforcement learning environment.
• rlPredefinedEnv — Create a predefined reinforcement learning environment.

Properties
Model — Simulink model name
string | character vector

Simulink model name, specified as a string or character vector. The specified model must contain one
or more RL Agent blocks.

AgentBlock — Agent block paths
string | string array

Agent block paths, specified as a string or string array.

If Model contains a single RL Agent block for training, then AgentBlock is a string containing the
block path.

If Model contains multiple RL Agent blocks for training, then AgentBlock is a string array, where
each element contains the path of one agent block.

Model can contain RL Agent blocks whose path is not included in AgentBlock. Such agent blocks
behave as part of the environment and select actions based on their current policies. When you call
sim or train, the experiences of these agents are not returned and their policies are not updated.

The agent blocks can be inside of a model reference. For more information on configuring an agent
block for reinforcement learning, see RL Agent.

ResetFcn — Reset behavior for environment
function handle | anonymous function handle
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Reset behavior for the environment, specified as a function handle or anonymous function handle.
The function must have a single Simulink.SimulationInput input argument and a single
Simulink.SimulationInput output argument.

The reset function sets the initial state of the Simulink environment. For example, you can create a
reset function that randomizes certain block states such that each training episode begins from
different initial conditions.

If you have an existing reset function myResetFunction on the MATLAB path, set ResetFcn using a
handle to the function.

env.ResetFcn = @(in)myResetFunction(in);

If your reset behavior is simple, you can implement it using an anonymous function handle. For
example, the following code sets the variable x0 to a random value.

env.ResetFcn = @(in) setVariable(in,'x0',rand());

The sim function calls the reset function to reset the environment at the start of each simulation, and
the train function calls it at the start of each training episode.

UseFastRestart — Option to toggle fast restart
"on" (default) | "off"

Option to toggle fast restart, specified as either "on" or "off". Fast restart allows you to perform
iterative simulations without compiling a model or terminating the simulation each time.

For more information on fast restart, see “How Fast Restart Improves Iterative Simulations”
(Simulink).

Object Functions
train Train reinforcement learning agents within a specified environment
sim Simulate trained reinforcement learning agents within specified environment
getObservationInfo Obtain observation data specifications from reinforcement learning

environment or agent
getActionInfo Obtain action data specifications from reinforcement learning environment or

agent

Examples

Create Simulink Environment Using Agent in Workspace

Create a Simulink environment using the trained agent and corresponding Simulink model from the
“Create Simulink Environment and Train Agent” example.

Load the agent in the MATLAB® workspace.

load rlWaterTankDDPGAgent

Create an environment for the rlwatertank model, which contains an RL Agent block. Since the
agent used by the block is already in the workspace, you do not need to pass the observation and
action specifications to create the environment.

env = rlSimulinkEnv('rlwatertank','rlwatertank/RL Agent')

 SimulinkEnvWithAgent

3-217



env = 
SimulinkEnvWithAgent with properties:

           Model : rlwatertank
      AgentBlock : rlwatertank/RL Agent
        ResetFcn : []
  UseFastRestart : on

Validate the environment by performing a short simulation for two sample times.

validateEnvironment(env)

You can now train and simulate the agent within the environment by using train and sim,
respectively.

Create Reinforcement Learning Environment for Simulink Model

For this example, consider the rlSimplePendulumModel Simulink model. The model is a simple
frictionless pendulum that initially hangs in a downward position.

Open the model.

mdl = 'rlSimplePendulumModel';
open_system(mdl)

Create rlNumericSpec and rlFiniteSetSpec objects for the observation and action information,
respectively.

obsInfo = rlNumericSpec([3 1]) % vector of 3 observations: sin(theta), cos(theta), d(theta)/dt

obsInfo = 
  rlNumericSpec with properties:

     LowerLimit: -Inf
     UpperLimit: Inf
           Name: [0x0 string]
    Description: [0x0 string]
      Dimension: [3 1]
       DataType: "double"

actInfo = rlFiniteSetSpec([-2 0 2]) % 3 possible values for torque: -2 Nm, 0 Nm and 2 Nm

actInfo = 
  rlFiniteSetSpec with properties:

       Elements: [3x1 double]
           Name: [0x0 string]
    Description: [0x0 string]
      Dimension: [1 1]
       DataType: "double"

You can use dot notation to assign property values for the rlNumericSpec and rlFiniteSetSpec
objects.

3 Objects

3-218



obsInfo.Name = 'observations';
actInfo.Name = 'torque';

Assign the agent block path information, and create the reinforcement learning environment for the
Simulink model using the information extracted in the previous steps.

agentBlk = [mdl '/RL Agent'];
env = rlSimulinkEnv(mdl,agentBlk,obsInfo,actInfo)

env = 
SimulinkEnvWithAgent with properties:

           Model : rlSimplePendulumModel
      AgentBlock : rlSimplePendulumModel/RL Agent
        ResetFcn : []
  UseFastRestart : on

You can also include a reset function using dot notation. For this example, randomly initialize theta0
in the model workspace.

env.ResetFcn = @(in) setVariable(in,'theta0',randn,'Workspace',mdl)

env = 
SimulinkEnvWithAgent with properties:

           Model : rlSimplePendulumModel
      AgentBlock : rlSimplePendulumModel/RL Agent
        ResetFcn : @(in)setVariable(in,'theta0',randn,'Workspace',mdl)
  UseFastRestart : on

Create Simulink Environment for Multiple Agents

Create an environment for the Simulink model from the example “Train Multiple Agents to Perform
Collaborative Task”.

Load the agents in the MATLAB workspace.

load rlCollaborativeTaskAgents

Create an environment for the rlCollaborativeTask model, which has two agent blocks. Since the
agents used by the two blocks (agentA and agentB) are already in the workspace, you do not need
to pass their observation and action specifications to create the environment.

env = rlSimulinkEnv('rlCollaborativeTask',["rlCollaborativeTask/Agent A","rlCollaborativeTask/Agent B"])

env = 
SimulinkEnvWithAgent with properties:

           Model : rlCollaborativeTask
      AgentBlock : [
                     rlCollaborativeTask/Agent A
                     rlCollaborativeTask/Agent B
                   ]
        ResetFcn : []
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  UseFastRestart : on

You can now simulate or train the agents within the environment using sim or train, respectively.

Create Continuous Simple Pendulum Model Environment

Use the predefined 'SimplePendulumModel-Continuous' keyword to create a continuous simple
pendulum model reinforcement learning environment.

env = rlPredefinedEnv('SimplePendulumModel-Continuous')

env = 
SimulinkEnvWithAgent with properties:

           Model : rlSimplePendulumModel
      AgentBlock : rlSimplePendulumModel/RL Agent
        ResetFcn : []
  UseFastRestart : on

Create Environment from Simulink Model

This example shows how to use createIntegratedEnv to create an environment object starting
from a Simulink model that implements the system with which the agent. Such a system is often
referred to as plant, open-loop system, or reference system, while the whole (integrated) system
including the agent is often referred to as the closed-loop system.

For this example, use the flying robot model described in “Train DDPG Agent to Control Flying
Robot” as the reference (open-loop) system.

Open the flying robot model.

open_system('rlFlyingRobotEnv')

Initialize the state variables and sample time.

% initial model state variables
theta0 = 0;
x0 = -15;
y0 = 0;

% sample time
Ts = 0.4;

Create the Simulink model IntegratedEnv containing the flying robot model connected in a closed
loop to the agent block. The function also returns the reinforcement learning environment object env
to be used for training.

env = createIntegratedEnv('rlFlyingRobotEnv','IntegratedEnv')

env = 
SimulinkEnvWithAgent with properties:
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           Model : IntegratedEnv
      AgentBlock : IntegratedEnv/RL Agent
        ResetFcn : []
  UseFastRestart : on

The function can also return the block path to the RL Agent block in the new integrated model, as
well as the observation and action specifications for the reference model.

[~,agentBlk,observationInfo,actionInfo] = createIntegratedEnv('rlFlyingRobotEnv','IntegratedEnv')

agentBlk = 
'IntegratedEnv/RL Agent'

observationInfo = 
  rlNumericSpec with properties:

     LowerLimit: -Inf
     UpperLimit: Inf
           Name: "observation"
    Description: [0x0 string]
      Dimension: [7 1]
       DataType: "double"

actionInfo = 
  rlNumericSpec with properties:

     LowerLimit: -Inf
     UpperLimit: Inf
           Name: "action"
    Description: [0x0 string]
      Dimension: [2 1]
       DataType: "double"

Returning the block path and specifications is useful in cases in which you need to modify
descriptions, limits, or names in observationInfo and actionInfo. After modifying the
specifications, you can then create an environment from the integrated model IntegratedEnv using
the rlSimulinkEnv function.

See Also
Functions
rlSimulinkEnv | rlPredefinedEnv | train | sim | rlNumericSpec | rlFiniteSetSpec

Blocks
RL Agent

Topics
“Create Simulink Reinforcement Learning Environments”

Introduced in R2019a
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softplusLayer
Softplus layer for actor or critic network

Description
A softplus layer applies the softplus activation function Y = log(1 + eX), which ensures that the output
is always positive. This activation function is a smooth continuous version of reluLayer. You can
incorporate this layer into the deep neural networks you define for actors in reinforcement learning
agents. This layer is useful for creating continuous Gaussian policy deep neural networks, for which
the standard deviation output must be positive.

Creation

Syntax
sLayer = softplusLayer
sLayer = softplusLayer(Name,Value)

Description

sLayer = softplusLayer creates a softplus layer with default property values.

sLayer = softplusLayer(Name,Value) sets properties on page 3-222 using name-value pairs.
For example, softplusLayer('Name','softlayer') creates a softplus layer and assigns the
name 'softlayer'.

Properties
Name — Name of layer
'softplus' (default) | character vector

Name of layer, specified as a character vector. To include a layer in a layer graph, you must specify a
nonempty unique layer name. If you train a series network with this layer and Name is set to '', then
the software automatically assigns a name to the layer at training time.

Description — Description of layer
'Softplus layer' (default) | character vector

This property is read-only.

Description of layer, specified as a character vector. When you create the softplus layer, you can use
this property to give it a description that helps you identify its purpose.

Examples
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Create Softplus Layer

Create s softplus layer.

sLayer = softplusLayer;

You can specify the name of the softplus layer. For example, if the softplus layer represents the
standard deviation of a Gaussian policy deep neural network, you can specify an appropriate name.

sLayer = softplusLayer('Name','stddev')

sLayer = 
  SoftplusLayer with properties:

    Name: 'stddev'

   Learnable Parameters
    No properties.

   State Parameters
    No properties.

  Show all properties

You can incorporate sLayer into an actor network for reinforcement learning.

See Also
quadraticLayer | scalingLayer

Topics
“Create Policy and Value Function Representations”

Introduced in R2020a
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RL Agent
Reinforcement learning agent
Library: Reinforcement Learning Toolbox

Description
Use the RL Agent block to simulate and train a reinforcement learning agent in Simulink. You
associate the block with an agent stored in the MATLAB workspace or a data dictionary as an agent
object such as an rlACAgent or rlDDPGAgent object. You connect the block so that it receives an
observation and a computed reward. For instance, consider the following block diagram of the
rlSimplePendulumModel model.

The observation input port of the RL Agent block receives a signal that is derived from the
instantaneous angle and angular velocity of the pendulum. The reward port receives a reward
calculated from the same two values and the applied action. You configure the observations and
reward computations that are appropriate to your system.

The block uses the agent to generate an action based on the observation and reward you provide.
Connect the action output port to the appropriate input for your system. For instance, in the
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rlSimplePendulumModel, the action port is a torque applied to the pendulum system. For more
information about this model, see “Train DQN Agent to Swing Up and Balance Pendulum”.

To train a reinforcement learning agent in Simulink, you generate an environment from the Simulink
model. You then create and configure the agent for training against that environment. For more
information, see “Create Simulink Reinforcement Learning Environments”. When you call train
using the environment, train simulates the model and updates the agent associated with the block.

Ports
Input

observation — Environment observations
scalar | vector | nonvirtual bus

This port receives observation signals from the environment. Observation signals represent
measurements or other instantaneous system data. If you have multiple observations, you can use a
Mux block to combine them into a vector signal. To use a nonvirtual bus signal, use bus2RLSpec.

reward — Reward from environment
scalar

This port receives the reward signal, which you compute based on the observation data. The reward
signal is used during agent training to maximize the expectation of the long-term reward.

isdone — Flag to terminate episode simulation
logical

Use this signal to specify conditions under which to terminate a training episode. You must configure
logic appropriate to your system to determine the conditions for episode termination. One application
is to terminate an episode that is clearly going well or going poorly. For instance, you can terminate
an episode if the agent reaches its goal or goes irrecoverably far from its goal.

external action — External action signal
scalar | vector

Use this signal to provide an external action to the block. This signal can be a control action from a
human expert, which can be used for safe or imitation learning applications. When the value of the
use external action signal is 1, the passes the external action signal to the environment through
the action block output. The block also uses the external action to update the agent policy based on
the resulting observations and rewards.

Dependencies

To enable this port, select the Add inports for external action signal parameter.

use external action — Use external action signal
0 | 1

Use this signal to pass the external action signal to the environment.

When the value of the use external action signal is 1 the block passes the external action signal to
the environment. The block also uses the external action to update the agent policy.
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When the value of the use external action signal is 0 the block does not pass the external action
signal to the environment and does not update the policy using the external action. Instead, the
action from the block uses the action from the agent policy.

Dependencies

To enable this port, select the Add inports for external action signal parameter.

Output

action — Agent action
scalar | vector | nonvirtual bus

Action computed by the agent based on the observation and reward inputs. Connect this port to the
inputs of your system. To use a nonvirtual bus signal, use bus2RLSpec.

Note When agents such as rlACAgent, rlPGAgent, or rlPPOAgent use an
rlStochasticActorRepresentation actor with a continuous action space, the constraints set by
the action specification are not enforced by the agent. In these cases, you must enforce action space
constraints within the environment.

cumulative reward — Total reward
scalar | vector

Cumulative sum of the reward signal during simulation. Observe or log this signal to track how the
cumulative reward evolves over time.

Dependencies

To enable this port, select the Provide cumulative reward signal parameter.

Parameters
Agent object — Agent to train
agent (default) | agent object

Enter the name of an agent object stored in the MATLAB workspace or a data dictionary, such as an
rlACAgent or rlDDPGAgent object. For information about agent objects, see “Reinforcement
Learning Agents”.

Programmatic Use
Block Parameter: Agent
Type: string, character vector
Default: "agentObj"

Provide cumulative reward signal — Add cumulative reward output port
off (default) | on

Enable the cumulative reward block output by selecting this parameter.

Programmatic Use
Block Parameter: ProvideCumRwd
Type: string, character vector
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Values: "off", "on"
Default: "off"

Add inports for external action signal — Add input ports for external action
off (default) | on

Enable the external action and use external action block input ports by selecting this parameter.

Programmatic Use
Block Parameter: ExternalActionAsInput
Type: string, character vector
Values: "off", "on"
Default: "off"

See Also
bus2RLSpec | createIntegratedEnv

Topics
“Create Simulink Reinforcement Learning Environments”
“Create Simulink Environment and Train Agent”

Introduced in R2019a
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